Skip to main content
Log in

Non-isothermal crystallization kinetics and its effect on the mechanical properties of homopolymer isotactic polypropylene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization of the isotactic Polypropylene (iPP) was studied using differential scanning calorimetry and polarizing optical microscopy. Jeziorny’s model and Ozawa’s theoretical approaches were applied to study the non-isothermal kinetics of the iPP. Jeziorny’s approach proved to be the most relevant model to the present material. Simultaneously, the activation energy was calculated with Kissinger’s method and Vyazovkin’s iso-conversional approach. Indeed, the latter provides an activation energy varying between 100 and 176 kJ/mol. Furthermore, the WAXD scans indicated the presence of a single crystalline form in the used material. To study the effect of the microstructure on the mechanical properties of the iPP, multiscale tensile tests were carried out for different film microstructures. At macroscopic scale, the increase in the diameter of spherulites, inevitably accompanied by a rise in the crystallinity rate, induces the growth of rigidity, brittleness, and elastic limit. Moreover, the results of the in-situ micro-tensile tests present the evolution of spherulites during loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Nassiri H, Arabi H, Hakim S, Bolandi S (2011) Polymerization of propylene with Ziegler-Natta catalyst: optimization of operating conditions by response surface methodology (RSM). Polym Bull 67(7):1393–1411

    Article  CAS  Google Scholar 

  2. Kunimitsu T, Toyoda K, Ikaga T, Kim K, Ohkoshi Y, Koike K (2020) High strength fiber obtained from a high stereoregularity metallocene catalyst-synthesized polypropylene. Polymer 202:122–654

    Article  Google Scholar 

  3. Ding Q, Zhang Z, Dai X, Li M, Mai K (2014) Crystalline morphology and mechanical properties of isotactic polypropylene composites filled by wollastonite with β-nucleating surface. Polym Compos 35(8):1445–1452

    Article  CAS  Google Scholar 

  4. Shyr T-W, Ko H-C, Wu T-M, Wu T-M (2019) Crystallisation and spherulite morphology of polylactide stereocomplex. Polym Int 68(1):141–150

    Article  CAS  Google Scholar 

  5. Gallegos-Medrano KK, Escobar-Barrios V, Santamaría-Razo DA, Gutierrez-Castañeda EJ, Montesinos JV, Peña-Juarez MG et al (2021) Influence of chain length, particle size, and thermal treatment of dicarboxylic acid-functionalized titanium dioxide filler in polypropylene. J Mater Res 36(8):1718–1729

    Article  CAS  Google Scholar 

  6. Lotz B, Wittmann JC, Lovinger AJ (1996) Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37(22):4979–4992

    Article  CAS  Google Scholar 

  7. Brückner S, Meille SV, Petraccone V, Pirozzi B (1991) Polymorphism in isotactic polypropylene. Prog Polym Sci 16(2):361–404

    Article  Google Scholar 

  8. Stern C, Frick A, Weickert G (2007) Relationship between the structure and mechanical properties of polypropylene: Effects of the molecular weight and shear-induced structure. J Appl Polym Sci 103(1):519–533

    Article  CAS  Google Scholar 

  9. Carotenuto C, Grassia L, Paduano LP, Minale M (2019 Non-Isothermal Crystallization Kinetics of an Ethylene-Vinyl-Acetate. II. Time-Temperature-Crystallinity-Superposition. Polym Eng Sci 59(12):2550–2556

  10. Gradys A, Sajkiewicz P, Minakov AA, Adamovsky S, Schick C, Hashimoto T et al (2005) Crystallization of polypropylene at various cooling rates. Mater Sci Eng A 413–414:442–446

    Article  Google Scholar 

  11. Wellen RMR, Canedo EL, Rabello MS (2015) Melting and crystallization of poly(3-hydroxybutyrate)/carbon black compounds. Effect of heating and cooling cycles on phase transition. J Mater Res 30(21):3211–3226

  12. Keridou I, del Valle LJ, Funk L, Turon P, Franco L, Puiggalí J (2019) Non-Isothermal Crystallization Kinetics of Poly(4-Hydroxybutyrate) Biopolym Mole 24(15)

  13. Wellen RMR, Canedo E, Rabello MS (2011) Nonisothermal cold crystallization of poly(ethylene terephthalate). J Mater Res 26(9):1107–1115

    Article  CAS  Google Scholar 

  14. He M, Wei T, Zhang L, Jia Q (2016) Isothermal and nonisothermal crystallization kinetics of fully bio-based polyamides. Polym Eng Sci 56(7):829–836

    Article  CAS  Google Scholar 

  15. Mubarak Y, Harkin-Jones EMA, Martin PJ, Ahmad M (2001) Modeling of non-isothermal crystallization kinetics of isotactic polypropylene. Polymer 42(7):3171–3182

    Article  CAS  Google Scholar 

  16. Layachi A, Makhlouf A, Frihi D, Satha H, Belaadi A, Seguela R (2019) Non-isothermal crystallization kinetics and nucleation behavior of isotactic polypropylene composites with micro-talc. J Therm Anal Calorim 138(2):1081–1095

    Article  CAS  Google Scholar 

  17. Di Lorenzo ML, Silvestre C (1999) Non-isothermal crystallization of polymers. Prog Polym Sci 24(6):917–950

    Article  Google Scholar 

  18. Wang G, Hou S, Cao J, Ding P, Shen J, Chen J (2018) Reinforcing and toughening isotactic polypropylene through shear-induced crystallization and β-nucleating agent induced crystallization. J Polym Res 25(11):233

    Article  Google Scholar 

  19. Huan Q, Zhu S, Ma Y, Zhang J, Zhang S, Feng X et al (2013) Markedly improving mechanical properties for isotactic polypropylene with large-size spherulites by pressure-induced flow processing. Polymer 54(3):1177–1183

    Article  CAS  Google Scholar 

  20. Pavlov VI (1971) Investigation of the effect of spherulite size on the strength and deformation characteristics of isotactic polypropylene films. Mater Sci 4(5):438–440

    Article  Google Scholar 

  21. Nitta K, Odaka K (2009) Influence of structural organization on tensile properties in mesomorphic isotactic polypropylene. Polymer 50(16):4080–4088

    Article  CAS  Google Scholar 

  22. Doyle MJ (2000) On the effect of crystallinity on the elastic properties of semicrystalline polyethylene. Polym Eng Sci 40(2):330–335

    Article  CAS  Google Scholar 

  23. Fatahi S, Ajji A, Lafleur PG (2007) Correlation between different microstructural parameters and tensile modulus of various polyethylene blown films. Polym Eng Sci 47(9):1430–1440

    Article  CAS  Google Scholar 

  24. Yasin S, Sun D, Memon H, Zhu F, Jian H, Bin Y et al (2018) Optimization of Mechanical and Thermal Properties of iPP and LMPP Blend Fibres by Surface Response Methodology. Polymers 10(10):1135

    Article  PubMed Central  Google Scholar 

  25. Mahmood N, Kolesov I, Glüge R, Altenbach H, Androsch R, Beiner M (2020) Influence of structure gradients in injection moldings of isotactic polypropylene on their mechanical properties. Polymer 200:122556

  26. Dietz W (2016) Effect of cooling on crystallization and microstructure of polypropylene. Polym Eng Sci 56(11):1291–1302

    Article  CAS  Google Scholar 

  27. Ray SS (2013) Clay-Containing Polymer Nanocomposites: From Fundamentals to Real Applications. Newnes 412 p

  28. Righetti MC (2017) Crystallization of Polymers Investigated by Temperature-Modulated DSC. Materials 10(4):442

    Article  PubMed Central  Google Scholar 

  29. Buzarovska A (2004) Crystallization of polymers (2nd edition) Volume 2: Kinetics and mechanisms. Edited by Leo Mandelkern. Cambridge University Press, Cambridge. ISBN 0 521 81682 3. pp 478. Polym Int 2005;54(10):1466–1467

  30. Zhang C, Lan Q, Zhai T, Nie S, Luo J, Yan W (2018) Melt Crystallization Behavior and Crystalline Morphology of Polylactide/Poly(ε-caprolactone) Blends Compatibilized by Lactide-Caprolactone Copolymer. Polymers 10(11):1181

    Article  PubMed Central  Google Scholar 

  31. Clark EJ, Hoffman JD (1984) Regime III crystallization in polypropylene. Macromolecules 17(4):878–885

    Article  CAS  Google Scholar 

  32. Avrami M (1939) Kinetics of Phase Change I General Theory. J Chem Phys 7(12):1103–1112

    Article  CAS  Google Scholar 

  33. Avrami M (1940) Kinetics of Phase Change II. Transformation-Time Relations for Random Distribution of Nuclei. J Chem Phys 8(2):212–224

    Article  CAS  Google Scholar 

  34. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems. Polym Test 26(2):222–231

    Article  CAS  Google Scholar 

  35. Jeziorny A (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer 19(10):1142–1144

    Article  CAS  Google Scholar 

  36. Tian J, Yu W, Zhou C (2007) Crystallization behaviors of linear and long chain branched polypropylene. J Appl Polym Sci 104(6):3592–3600

    Article  CAS  Google Scholar 

  37. Zhu X, Li Y, Yan D, Fang Y (2001) Crystallization behavior of partially melting isotactic polypropylene. Polymer 42(22):9217–9222

    Article  CAS  Google Scholar 

  38. Gupta S, Yuan X, Chung TCM, Cakmak M, Weiss RA (2014) Isothermal and non-isothermal crystallization kinetics of hydroxyl-functionalized polypropylene. Polymer 55(3):924–935

    Article  CAS  Google Scholar 

  39. Cho K, Li F, Choi J (1999) Crystallization and melting behavior of polypropylene and maleated polypropylene blends. Polymer 40(7):1719–1729

    Article  CAS  Google Scholar 

  40. Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12(3):150–158

    Article  CAS  Google Scholar 

  41. Evans UR (1945) The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Trans Faraday Soc 41:365–374

    Article  CAS  Google Scholar 

  42. Vyazovkin S (2018) Nonisothermal crystallization of polymers: Getting more out of kinetic analysis of differential scanning calorimetry data. Polym Crystallization 1(2):e10003

    Google Scholar 

  43. Kissinger HE (1957) Reaction Kinetics in Differential Thermal Analysis. Anal Chem 29(11):1702–1706

    Article  CAS  Google Scholar 

  44. Achilias DS, Papageorgiou GZ, Karayannidis GP (2005) Evaluation of the Isoconversional Approach to Estimating the Hoffman-Lauritzen Parameters from the Overall Rates of Non-Isothermal Crystallization of Polymers. Macromol Chem Phys 206(15):1511–1519

    Article  CAS  Google Scholar 

  45. Vyazovkin S, Sbirrazzuoli N (2003) Isoconversional Analysis of Calorimetric Data on Nonisothermal Crystallization of a Polymer Melt. J Phys Chem B 107(3):882–888

    Article  CAS  Google Scholar 

  46. Benhacine F, Yahiaoui F, Hadj-Hamou AS (2014) Thermal Stability and Kinetic Study of Isotactic Polypropylene/Algerian Bentonite Nanocomposites Prepared via Melt Blending. Grohens Y éditeur J Polym 2014:426–470

  47. Xing Y, Wang Y, Huang J, Fei Z, Liu Q, Chen X et al (2020) Study on the Mechanism and Kinetics of Waste Polypropylene Cracking Oxidation over the Mn2O3/HY Catalyst by TG–MS and In Situ FTIR. Ind Eng Chem Res 59(38):16569–16578

    Article  CAS  Google Scholar 

  48. Monasse B, Haudin JM (1986) Thermal dependence of nucleation and growth rate in polypropylene by non isothermal calorimetry. Colloid Polym Sci 264(2):117–122

    Article  CAS  Google Scholar 

  49. Labour T, Gauthier C, Séguéla R, Vigier G, Bomal Y, Orange G (2001) Influence of the β crystalline phase on the mechanical properties of unfilled and CaCO3-filled polypropylene I. Structural and mechanical characterisation. Polymer 42(16):7127–7135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nouira.

Ethics declarations

Conflict of interest

There is no conflict and interest for this paper. All of persons had same contribution on this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouira, S., Hassine, T., Fitoussi, J. et al. Non-isothermal crystallization kinetics and its effect on the mechanical properties of homopolymer isotactic polypropylene. J Polym Res 29, 26 (2022). https://doi.org/10.1007/s10965-021-02869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02869-4

Keywords

Navigation