Skip to main content
Log in

The preparation of inorganic/organic hybrid nanomaterials containing silsesquioxane and its reinforcement for an epoxy resin network

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A series of new inorganic/organic hybrid nanomaterials were prepared through the reaction of cage octa(γ-aminopropylsilsesquioxane) with n-butyl glycidyl ether. The structures and properties of these hybrid materials were characterized by Fourier transform infrared spectroscopy, 29Si nuclear magnetic resonance (NMR), 1H-NMR, and mass spectrometry spectra. The hybrid materials were used for improving mechanical and thermal properties of epoxy resin E-51. The results showed that appropriate amount of addition of the hybrids could enhance the fracture elongation ratio and impact strength. The tensile strength decreased with the addition of the hybrids. The thermal properties such as glass transition temperature, antioxidant index, decomposition temperature, and Vicat softening temperature were obviously improved. Scanning electron microscope observation displayed a rough structure inside the cured epoxy resin by the addition of the hybrids. Kinetic study indicated that the curing process was continuous with average activation energy of 48.06 kJ/mol which was based on Kissinger and Flynn–Wall–Ozawa models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Murugavel R, Voigt A, Walawalkar MG, Roesky HW (1996) Chem Rev 96:2205–2236

    Article  CAS  Google Scholar 

  2. Baney RH, Itoh M, Sakakibara A, Suzukit T (1995) Chem Rev 95:1409–1430

    Article  CAS  Google Scholar 

  3. Sanchez C, Soler-Illia GJ, de AA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Chem Mater 13:3061–3083

    Article  CAS  Google Scholar 

  4. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Acc Chem Res 38:879–884

    Article  CAS  Google Scholar 

  5. Kaneshiro TL, Wang XL, Lu ZR (2007) Molecular Pharmaceutics 4(5):759–768

    Article  CAS  Google Scholar 

  6. Balas F, Manzano M, Horcajada P, Vallet-Regi M (2006) J Am Chem Soc 128:81168117

    Article  Google Scholar 

  7. Zhang Z, Liang G, Ren P, Wang J (2008) Polym Compos 29:77–83

    Article  Google Scholar 

  8. Zhang Z, Liang G, Wang J, Ren P (2007) Polym Compos 28:175–179

    Article  Google Scholar 

  9. Zhang Z, Gu A, Liang G, Ren P, Xie J, Wang X (2007) Polym Degrad Stab 92:1986–1993

    Article  CAS  Google Scholar 

  10. Matejka L, Strachota A, Plestil J, Whelan P, Steinhart M, Slouf M (2004) Macromolecules 37:9449–9456

    Article  CAS  Google Scholar 

  11. Choi J, Yee AF, Laine RM (2003) Macromolecules 36:5666–5682

    Article  CAS  Google Scholar 

  12. Zucchi IA, Galante MJ, Williams RJJ, Franchini E, Galy J, Gerard JF (2007) Macromolecules 40:1274–1282

    Article  CAS  Google Scholar 

  13. Liu H, Zheng S, Nie K (2005) Macromolecules 38:5088–5097

    Article  CAS  Google Scholar 

  14. Tamaki R, Tanaka Y, Asuncion MZ, Choi J, Laine RM (2001) J Am Chem Soc 123:12416–12417

    Article  CAS  Google Scholar 

  15. Iyer S, Schiraldi DA (2007) Macromolecules 40:4942–4952

    Article  CAS  Google Scholar 

  16. Ni Y, Zheng S (2007) Macromolecules 40:7009–7018

    Article  CAS  Google Scholar 

  17. Lee A, Lichtenhan JD (1998) Macromolecules 31:4970–4974

    Article  CAS  Google Scholar 

  18. Liu YL, Chang GP (2006) J Polym Sci: Part A: Polym Chem 44:1869–1876

    Article  CAS  Google Scholar 

  19. Zhang Z, Liang G, Lu T (2007) J Appli Polym Sci 103:2608–2614

    Article  CAS  Google Scholar 

  20. Feher FJ, Newman DA, Walzer JF (1989) J Am Chem Soc 111:1741

    Article  CAS  Google Scholar 

  21. Hoebbel D, Klaus E, Thomas R, Irene P (1994) J Non-Cryst Solids 176:179

    Article  CAS  Google Scholar 

  22. Liu L, Song L, Zhang S, Hu Y (2006) J China Uni Sci and Techn 36(1):29–33

    Article  Google Scholar 

  23. Chen WY, Wang YZ, Kuo SW, Huang CF, Tung PH, Chang FC (2004) Polymer 45:6897–6908

    Article  CAS  Google Scholar 

  24. Barral L, Díez FJ, García-Garabal S, López J, Montero B, Montes R, Ramírez C, Rico M (2005) Euro Polym J 41:1662–1666

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the support of National Science & Technology Pillar Program (2007BAE15B02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihua Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, C., Ni, G., Zhang, S. et al. The preparation of inorganic/organic hybrid nanomaterials containing silsesquioxane and its reinforcement for an epoxy resin network. Colloid Polym Sci 288, 469–477 (2010). https://doi.org/10.1007/s00396-009-2160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2160-7

Keywords

Navigation