Skip to main content
Log in

Hydrophobically modified polyelectrolytes used as reducing and stabilizing agent for the formation of gold nanoparticles

  • Original contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This paper is focused on the synthesis and characterization of hydrophobically modified polyelectrolytes and their use as reducing as well as stabilizing agents for the formation of gold nanoparticles. Commercially available poly(acrylic acid) has been hydrophobically modified with various degrees of grafting of butylamine introduced randomly along the chain. Different analytical methods are performed, i.e., IR and 1H-NMR spectroscopy in combination with elemental analysis to determine the degree of grafting. The modified polymers can successfully be used for the controlled single-step synthesis and stabilization of gold nanoparticles. The process of nanoparticle formation is investigated by means of UV-vis spectroscopy. The size and shape of the particles obtained in the presence of unmodified or modified polyelectrolytes are characterized by dynamic light scattering, zeta potential measurements and transmission electron microscopy. The polyelectrolytes were involved in the crystallization process of the nanoparticles, and in the presence of hydrophobic microdomains at the particle surface, a better stabilization at higher temperature can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Demaille C, Brust M, Tsionsky M, Bard AJ (1997) Anal Chem 69(13):2323

    Article  CAS  Google Scholar 

  2. Hayward RC, Saville DA, Aksay IA (2000) Nature 404:56

    Article  CAS  Google Scholar 

  3. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) Nature 391:775

    Article  CAS  Google Scholar 

  4. Chen M, Yamaruro S, Farrell D, Majetich SA (2003) J Appl Phys 93:7551

    Article  CAS  Google Scholar 

  5. Ciebien JF, Cohen RE, Duran A (1998) Supramol Sci 5:31

    Article  CAS  Google Scholar 

  6. Wilcoxon JP, Martin JE, Parsapour F, Wiedenman B, Kelley DF (1998) J Chem Phys 108(21):9137

    Article  CAS  Google Scholar 

  7. Hayat MA (ed) (1989) Colloidal gold: principles, methods and applications. Academic, San Diego

    Google Scholar 

  8. Hyatt AD, Eaton BT (1993) Immuno-gold electron microscopy in virus diagnosis and research. CRC, Boca Raton

    Google Scholar 

  9. Quinn M, Mills GJ (1994) Phys Chem 98:9840

    Article  CAS  Google Scholar 

  10. Wei Y, Cao C, Jin R, Mirkin CA (2002) Science 297:1536

    Article  Google Scholar 

  11. Roucoux A, Schulz J, Patin H (2002) Chem Rev 102:3757

    Article  CAS  Google Scholar 

  12. Faraday M (1857) Philos Trans R Soc Lond 147:145

    Article  Google Scholar 

  13. Esumi K, Suzuki A, Aihara N, Usui K, Torigoe K (1998) Langmuir 14:3157

    Article  CAS  Google Scholar 

  14. Mayer ABR, Mark JE (1998) Eur Polym J 34(1):103

    Article  CAS  Google Scholar 

  15. Sidorov SN, Bronstein LM, Valetsky PM, Hartmann J, Cölfen H, Schnablegger H, Antonietti M (1998) J Colloid Interface Sci 212:197

    Article  Google Scholar 

  16. Caruso RA, Giersig M, Willig F, Antonietti M (1998) Langmuir 14:6333

    Article  CAS  Google Scholar 

  17. Caruso RA, Antonietti M, Giersig M, Hentze HP, Jia J (2001) Chem Mater 13:1114

    Article  CAS  Google Scholar 

  18. Faul CFJ, Antonietti M, Hentze HP, Smarsly B (2003) Colloids Surf 212(2–3):115

    Article  CAS  Google Scholar 

  19. Grohn F, Kim G, Bauer AJ, Amis EJ (2001) Macromolecules 34(7):2179

    Article  CAS  Google Scholar 

  20. Saito H, Okamura S, Ishizu K (1992) Polymer 33:1099

    Article  CAS  Google Scholar 

  21. Chan YNC, Schrock RR, Cohen RE (1992) Chem Mater 4:24

    Article  CAS  Google Scholar 

  22. Capek I (2004) Adv Coll Int Sci 110:49

    Article  CAS  Google Scholar 

  23. Mayer ABR, Mark JE (2000) Polymer 41:1627

    Article  CAS  Google Scholar 

  24. Mayer ABR, Mark JE (1997) Colloid Polym Sci 275:333

    Article  CAS  Google Scholar 

  25. Corbierre MK, Cameron NS, Lennox RB (2004) Langmuir 20:2867

    Article  CAS  Google Scholar 

  26. Kim F, Connor S, Song H, Kuykendall T, Yang P (2004) Angew Chem Int Ed 43:3673

    Article  CAS  Google Scholar 

  27. Pugh TL, Heller WJ (1960) Polym Sci 47(149):219

    Article  CAS  Google Scholar 

  28. Mayer ABR, Mark JE (1997) J Macromol Sci A 34(11):2151

    Article  Google Scholar 

  29. Sun X, Dong S, Wang E (2004) Polymer 45:2181

    Article  CAS  Google Scholar 

  30. Hussain I, Brust M, Papworth AJ, Cooper AI (2003) Langmuir 19:4831

    Article  CAS  Google Scholar 

  31. Sakai T, Alexandridis P (2004) Langmuir 208:426

    Google Scholar 

  32. Wang TK, Iliopoulos I, Audebert R (1988) Polym Bull 20:577

    Article  CAS  Google Scholar 

  33. Anghel DF, Alderson V, Winnik FM, Mizusaki M, Morishima Y (1998) Polymer 39(14):3035

    Article  CAS  Google Scholar 

  34. Garces FO, Sivadasan K, Somasundaran P, Turro NJ (1994) Macromolecules 27:272

    Article  CAS  Google Scholar 

  35. Moharram MA, Rabie SM, El-Gendy HM (2002) J Appl Polym Sci 85:1619

    Article  CAS  Google Scholar 

  36. Limin Q, Cölfen H, Antonietti M (2000) Angew Chem Int Ed 39(3):604

    Article  Google Scholar 

  37. Shu-Hong Y, Cölfen H, Antonietti M (2003) Adv Mater 15(2):133

    Article  Google Scholar 

  38. Dubin PL (1985) Microdomains in polymer solutions. Plenum, New York

    Google Scholar 

  39. Laschewski A (1995) Adv Polym Sci 124:1

    Article  Google Scholar 

  40. Koetz J, Kosmella S, Beitz T (2001) Prog Polym Sci 26:1199

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Laschewsky, University of Potsdam & Fraunhofer Institut für Angewandte Polymerforschung Golm, for useful discussions on polymer analysis, for the use of elemental analysis facilities and for providing access to the Infrared and the UV-vis spectroscopy instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Koetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Note, C., Koetz, J., Kosmella, S. et al. Hydrophobically modified polyelectrolytes used as reducing and stabilizing agent for the formation of gold nanoparticles. Colloid Polym Sci 283, 1334–1342 (2005). https://doi.org/10.1007/s00396-005-1349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1349-7

Keywords

Navigation