Skip to main content
Log in

Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Several stable palladium, platinum, silver, and gold colloids were prepared by reducing the corresponding metal precursors in the presence of protective amphiphilic block copolymers. Some palladium and platinum precursors with different hydrophobicities, namely palladium chloride PdCl2, palladium acetate Pd(CH3COO)2, hexachloroplatinic acid H2PtCl6, and platinum acetylacetonate Pt(CH3COCH = C(O-)CH3)2, have been used in order to investigate differences in their catalytic activity. The polymers investigated for their ability to stabilize such transition metal colloids were polystyrene-b-poly(ethylene oxide) and polystyrene-b-poly (methacrylic acid). The metal particle sizes and morphologies were determined by transmission electron microscopy and found to be in the nanometer range. The catalytic activity of the palladium and platinum colloids was tested by the hydrogenation of cyclohexene as a model reaction. The protected palladium and platinum nanoparticles were found to be catalytically active, and final conversions up to 100% cyclohexane could be obtained. Depending on the choice of polymer block types and lengths, the precursor type, and the reduction method, different nanoparticle morphologies and catalytic activities could be obtained. These novel catalytically active metal-polymer systems are thus promising candidates for the development of tailored catalyst systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Puddephatt RJ (1978) The Chemistry of Gold. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  2. Hirai H, Toshima N (1986) In: Iwasawa Y (ed) Catalysis by Metal Complexes, Tailored Metal Catalysts. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  3. Bradley JS (1994) In: Schmid G (ed) Clusters and Colloids. From Theory to Applications. VCH, Weinheim

    Google Scholar 

  4. Moffitt M, Eisenberg A (1995) Chem Mater 7:1178

    Article  CAS  Google Scholar 

  5. Napper DH (1983) Polymeric Stabilization of Colloidal Dispersions. Academic Press, London

    Google Scholar 

  6. Hirai H, Chawanya H, Toshima N (1981) Makromol Chem Rapid Commun 2:99

    Article  CAS  Google Scholar 

  7. Toshima N, Yonezawa T, Kushihashi K (1993) J Chem Soc Faraday Trans 89:2537

    Article  CAS  Google Scholar 

  8. Hirai H, Chawanya H, Toshima N (1985) Reactive Polymers 3:127

    CAS  Google Scholar 

  9. Warshawsky A, Upson DA (1989) J Pol Sci: Part A: Pol Chem 27:2963

    Article  CAS  Google Scholar 

  10. Mayer ABR, Mark JE (1995) PMSE Preprints 73:220

    CAS  Google Scholar 

  11. Mayer ABR, Mark JE (1996) In: Chow G-M, Gonsalves KE (eds) Nanotechnology, Molecularly Designed Materials. ACS Symposium Series 622. ACS, Washington, p 137

    Google Scholar 

  12. Mayer ABR, Mark JE (1996) Polym Bull 37:683

    Article  CAS  Google Scholar 

  13. Mayer ABR, Mark JE (1996) Macromol Rept 33:451

    Google Scholar 

  14. Moffitt M, McMahon L, Pessel V, Eisenberg A (1995) Chem Mater 7:1185

    Article  CAS  Google Scholar 

  15. Antonietti M, Wenz E, Bronstein L, Seregina M (1995) PMSE Preprints 73:283

    CAS  Google Scholar 

  16. Antonietti M, Wenz E, Bronstein L, Seregina M (1995) Adv Mat 7:1000

    Article  CAS  Google Scholar 

  17. Antonietti M, Förster S, Hartmann J, Oestreich S (1996) Macromolecules 29: 3800

    Article  CAS  Google Scholar 

  18. Spatz JP, Roescher A, Möller M (1996) Polymer Preprints 37:409

    CAS  Google Scholar 

  19. Roescher A, Möller M (1995) PMSE Preprints 73:156

    CAS  Google Scholar 

  20. Spatz JP, Roescher A, Möller M (1996) Adv Mat 8:337

    Article  CAS  Google Scholar 

  21. Cummins CC, Schrock RR, Cohen RE (1992) Chem Mater 4:27

    Article  CAS  Google Scholar 

  22. Chan YNC, Craig GSW, Schrock RR, Cohen RE (1992) Chem Mater 4:885

    Article  CAS  Google Scholar 

  23. Hirai H, Nakao Y, Toshima N (1979) J Macromol Sci-Chem A13:727

    Article  Google Scholar 

  24. Bönnemann H, Brijoux W, Joussen T (1990) Angew Chem Int Ed Engl 29:273

    Article  Google Scholar 

  25. Bönnemann H, Brijoux W, Brinkmann R, Fretzen R, Joussen T, Köppler R, Korall B, Neiteler P, Richter J (1994) J Mol Cat 86:129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, A.B.R., Mark, J.E. Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems. Colloid Polym Sci 275, 333–340 (1997). https://doi.org/10.1007/s003960050090

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003960050090

Key words

Navigation