Skip to main content

Advertisement

Log in

Role of integrins in mediating cardiac fibroblast–cardiomyocyte cross talk: a dynamic relationship in cardiac biology and pathophysiology

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Integrins are a family of heterodimeric proteins expressed by cardiac fibroblasts and cardiomyocytes that provide critical adhesive and signaling functions through their interactions with the extracellular matrix (ECM) and the actin cytoskeleton. These adhesive processes are important for paracrine signaling, ECM homeostasis and for the intercellular interactions that impact cardiac cell biology and pathophysiological adaptation in disease. Despite considerable progress, our understanding of the interplay between cardiac cells, the ECM and integrins remains largely elusive. In this review, we examine the role of integrins in adhesive and signaling functions, and how these functions enable communication between cardiac fibroblasts, cardiomyocytes and the ECM. These processes strongly influence cardiac development and, later, the progression into cardiac disease. An improved understanding of this multi-dimensional system in cardiac tissues is needed to decipher the biological, spatiotemporal and mechanical cues that regulate cardiac health and the manifestation of cardiac disease. Greater insight into integrin function in cardiac tissues may also suggest new treatments for the prevention of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

α-SMA:

α-Smooth muscle actin

ECM:

Extracellular matrix

ERK:

Extracellular-regulated kinase

DCM:

Diabetic cardiomyopathy

FAK:

Focal adhesion kinase

HBEGF:

Heparin-binding EGF-like growth factor

hiPSCs:

Human-induced pluripotent stem cells

MAPK:

Mitogen-activated protein kinases

MGO:

Methylglyoxal

MMPs:

Matrix metalloproteinases

PMCA4:

Plasma membrane calcium ATPase 4

RGD:

Arg-Gly-Asp

RhoA:

Ras homolog gene family, member A

TAC:

Transverse aortic constriction

TGF-β:

Transforming growth factor-β

WT:

Wild type

References

  1. Ahmadi A, McNeill B, Vulesevic B, Kordos M, Mesana L, Thorn S, Renaud JM, Manthorp E, Kuraitis D, Toeg H, Mesana TG, Davis DR, Beanlands RS, DaSilva JN, deKemp RA, Ruel M, Suuronen EJ (2014) The role of integrin alpha2 in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. Biomaterials 35:4749–4758. doi:10.1016/j.biomaterials.2014.02.028

    Article  CAS  PubMed  Google Scholar 

  2. Aneja A, Tang WHW, Bansilal S, Garcia MJ, Farkouh ME (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757. doi:10.1016/j.amjmed.2008.03.046

    Article  PubMed  Google Scholar 

  3. Annes JP (2004) Integrin V6-mediated activation of latent TGF- requires the latent TGF- binding protein-1. J Cell Biol 165:723–734. doi:10.1083/jcb.200312172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154:871–882. doi:10.1016/s0002-9440(10)65334-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Babbitt CJ, Shai S-Y, Harpf AE, Pham CG, Ross RS (2002) Modulation of integrins and integrin signaling molecules in the pressure-loaded murine ventricle. Histochem Cell Biol 118:431–439. doi:10.1007/s00418-002-0476-1

    CAS  PubMed  Google Scholar 

  6. Balasubramanian S, Quinones L, Kasiganesan H, Zhang Y, Pleasant DL, Sundararaj KP, Zile MR, Bradshaw AD, Kuppuswamy D (2012) β3 integrin in cardiac fibroblast is critical for extracellular matrix accumulation during pressure overload hypertrophy in mouse. PLoS One 7:e45076. doi:10.1371/journal.pone.0045076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baldwin HS, Buck CA (1994) Integrins and other cell adhesion molecules in cardiac development. Trends Cardiovasc Med 4:178–187. doi:10.1016/1050-1738(94)90055-8

    Article  CAS  PubMed  Google Scholar 

  8. Barczyk M, Carracedo S, Gullberg D (2009) Integrins. Cell Tissue Res 339:269–280. doi:10.1007/s00441-009-0834-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Barczyk MM, Lu N, Popova SN, Bolstad AI, Gullberg D (2013) α11β1 integrin-mediated MMP-13-dependent collagen lattice contraction by fibroblasts: evidence for integrin-coordinated collagen proteolysis. J Cell Physiol 228:1108–1119. doi:10.1002/jcp.24261

    Article  CAS  PubMed  Google Scholar 

  10. Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, DeSimone D, Bonewald LF, Lafer EM, Sprague E, Schwartz MA, Jiang JX (2012) Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci USA 109:3359–3364. doi:10.1073/pnas.1115967109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Borg TK, Goldsmith EC, Price R, Carver W, Terracio L, Samarel AM (2000) Specialization at the Z line of cardiac myocytes. Cardiovasc Res 46:277–285. doi:10.1016/S0008-6363(99)00433-2

    Article  CAS  PubMed  Google Scholar 

  12. Bouzeghrane F (2004) α8β1 integrin is upregulated in myofibroblasts of fibrotic and scarring myocardium. J Mol Cell Cardiol 36:343–353. doi:10.1016/j.yjmcc.2003.11.007

    Article  CAS  PubMed  Google Scholar 

  13. Brancaccio M, Hirsch E, Notte A, Selvetella G, Lembo G, Tarone G (2006) Integrin signalling: the tug-of-war in heart hypertrophy. Cardiovasc Res 70:422–433. doi:10.1016/j.cardiores.2005.12.015

    Article  CAS  PubMed  Google Scholar 

  14. Brilla CG, Maisch B, Weber KT (1992) Myocardial collagen matrix remodelling in arterial hypertension. Eur Heart J 13(Suppl D):24–32. doi:10.1093/eurheartj/13.suppl_D.24

    Article  CAS  PubMed  Google Scholar 

  15. Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Bøtker HE, Bulluck H, Cook S, Di Lisa F, Engel FB, Engelmann B, Ferrazzi F, Ferdinandy P, Fong A, Fleming I, Gnaiger E, Hernández-Reséndiz S, Kalkhoran SB, Kim MH, Lecour S, Liehn EA, Marber MS, Mayr M, Miura T, Ong S-B, Peter K, Sedding D, Singh MK, Suleiman MS, Schnittler HJ, Schulz R, Shim W, Tello D, Vogel C-W, Walker M, Li QOY, Yellon DM, Hausenloy DJ, Preissner KT (2016) From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on “New frontiers in cardiovascular research”. Basic Res Cardiol 111:69. doi:10.1007/s00395-016-0586-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40–51. doi:10.1016/j.cardiores.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  17. Carracedo S, Lu N, Popova SN, Jonsson R, Eckes B, Gullberg D (2010) The fibroblast integrin alpha11beta1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. J Biol Chem 285:10434–10445. doi:10.1074/jbc.M109.078766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carver W, Price RL, Raso DS, Terracio L, Borg TK (1994) Distribution of beta-1 integrin in the developing rat heart. J Histochem Cytochem 42:167–175. doi:10.1177/42.2.8288862

    Article  CAS  PubMed  Google Scholar 

  19. Castaldo C, Di Meglio F, Miraglia R, Sacco AM, Romano V, Bancone C, Corte Della A, Montagnani S, Nurzynska D (2013) Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart. Biomed Res Int 2013:352370. doi:10.1155/2013/352370

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chatterjee K, Massie B (2007) Systolic and diastolic heart failure: differences and similarities. J Card Fail 13:569–576. doi:10.1016/j.cardfail.2007.04.006

    Article  PubMed  Google Scholar 

  21. Civitarese RA, Talior-Volodarsky I, Desjardins J-F, Kabir G, Switzer J, Mitchell M, Kapus A, McCulloch CA, Gullberg D, Connelly KA (2016) The α11 integrin mediates fibroblast-extracellular matrix-cardiomyocyte interactions in health and disease. Am J Physiol Heart Circ Physiol 311:H96–H106. doi:10.1152/ajpheart.00918.2015

    Article  PubMed  Google Scholar 

  22. Connelly KA, Prior DL, Kelly DJ, Feneley MP, Krum H, Gilbert RE (2005) Load-sensitive measures may overestimate global systolic function in the presence of left ventricular hypertrophy: a comparison with load-insensitive measures. Am J Physiol Heart Circ Physiol 290:H1699–H1705. doi:10.1152/ajpheart.00577.2005

    Article  PubMed  CAS  Google Scholar 

  23. Czyz J, Guan K, Zeng Q, Wobus AM (2005) Loss of beta1 integrin function results in upregulation of connexin expression in embryonic stem cell-derived cardiomyocytes. Int J Dev Biol 49:33–41. doi:10.1387/ijdb.041835jc

    Article  CAS  PubMed  Google Scholar 

  24. Dell’Era P, Ronca R, Coco L, Nicoli S, Metra M, Presta M (2003) Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ Res 93:414–420. doi:10.1161/01.RES.0000089460.12061.E1

    Article  PubMed  CAS  Google Scholar 

  25. Diez J (2002) Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105:2512–2517. doi:10.1161/01.CIR.0000017264.66561.3D

    Article  CAS  PubMed  Google Scholar 

  26. Dullens HFJ, Schipper MEI, van Kuik J, Sohns W, Scheenstra M, van Wichen DF, Van Oosterhout MFM, de Jonge N, de Weger RA (2012) Integrin expression during reverse remodeling in the myocardium of heart failure patients. Cardiovasc Pathol 21:291–298. doi:10.1016/j.carpath.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  27. Estevez B, Shen B, Du X (2015) Targeting integrin and integrin signaling in treating thrombosis. Arterioscler Thromb Vasc Biol 35:24–29. doi:10.1161/ATVBAHA.114.303411

    Article  CAS  PubMed  Google Scholar 

  28. Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:1. doi:10.1186/1755-1536-5-15

    Article  CAS  Google Scholar 

  29. Franchini KG, Torsoni AS, Soares PH, Saad MJ (2000) Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart. Circ Res 87:558–565. doi:10.1161/01.RES.87.7.558

    Article  CAS  PubMed  Google Scholar 

  30. Fredj S, Bescond J, Louault C, Potreau D (2005) Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. J Cell Physiol 202:891–899. doi:10.1002/jcp.20197

    Article  CAS  PubMed  Google Scholar 

  31. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79. doi:10.1146/annurev.physiol.65.092101.142243

    Article  CAS  PubMed  Google Scholar 

  32. Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls alpha5beta1 function. Science 323:642–644. doi:10.1126/science.1168441

    Article  CAS  PubMed  Google Scholar 

  33. Gaudesius G, Miragoli M, Thomas SP, Rohr S (2003) Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res 93:421–428. doi:10.1161/01.RES.0000089258.40661.0C

    Article  CAS  PubMed  Google Scholar 

  34. Goshima K (1970) Formation of nexuses and electrotonic transmission between myocardial and FL cells in monolayer culture. Exp Cell Res 63:124–130. doi:10.1016/0014-4827(70)90339-3

    Article  CAS  PubMed  Google Scholar 

  35. Gullberg D, Gehlsen KR, Turner DC, Ahlén K, Zijenah LS, Barnes MJ, Rubin K (1992) Analysis of alpha 1 beta 1, alpha 2 beta 1 and alpha 3 beta 1 integrins in cell–collagen interactions: identification of conformation dependent alpha 1 beta 1 binding sites in collagen type I. EMBO J 11:3865–3873. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC556896/

  36. Gullberg D, Turner DC, Borg TK, Terracio L, Rubin K (1990) Different beta 1-integrin collagen receptors on rat hepatocytes and cardiac fibroblasts. Exp Cell Res 190:254–264. doi:10.1016/0014-4827(90)90194-F

    Article  CAS  PubMed  Google Scholar 

  37. Hinz B (2015) The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. doi:10.1016/j.matbio.2015.05.006

    PubMed  Google Scholar 

  38. Howard CM, Baudino TA (2014) Dynamic cell–cell and cell–ECM interactions in the heart. J Mol Cell Cardiol 70:19–26. doi:10.1016/j.yjmcc.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  39. Hsieh PCH, Davis ME, Lisowski LK, Lee RT (2006) Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol 68:51–66. doi:10.1146/annurev.physiol.68.040104.124629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hughes BG, Schulz R (2014) Targeting MMP-2 to treat ischemic heart injury. Basic Res Cardiol 109:424. doi:10.1007/s00395-014-0424-y

    Article  PubMed  CAS  Google Scholar 

  41. Ieda M, Fu J-D, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386. doi:10.1016/j.cell.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong T-T, Shaw RM, Srivastava D (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16:233–244. doi:10.1016/j.devcel.2008.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Israeli-Rosenberg S, Manso AM, Okada H, Ross RS (2014) Integrins and integrin-associated proteins in the cardiac myocyte. Circ Res 114:572–586. doi:10.1161/CIRCRESAHA.114.301275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iyer RK, Chiu LLY, Vunjak-Novakovic G, Radisic M (2012) Biofabrication enables efficient interrogation and optimization of sequential culture of endothelial cells, fibroblasts and cardiomyocytes for formation of vascular cords in cardiac tissue engineering. Biofabrication 4:035002. doi:10.1088/1758-5082/4/3/035002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jacot JG, Kita-Matsuo H, Wei KA, Vincent Chen HS, Omens JH, Mercola M, McCulloch AD (2010) Cardiac myocyte force development during differentiation and maturation. Ann N Y Acad Sci 1188:121–127. doi:10.1111/j.1749-6632.2009.05091.x

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jacot JG, Martin JC, Hunt DL (2010) Mechanobiology of cardiomyocyte development. J Biomech 43:93–98. doi:10.1016/j.jbiomech.2009.09.014

    Article  PubMed  Google Scholar 

  47. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 110:1465–1473. doi:10.1161/CIRCRESAHA.112.269035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnston RK, Balasubramanian S, Kasiganesan H, Baicu CF, Zile MR, Kuppuswamy D (2009) Beta3 integrin-mediated ubiquitination activates survival signaling during myocardial hypertrophy. FASEB J 23:2759–2771. doi:10.1096/fj.08-127480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jugdutt BI (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough? Circulation 108:1395–1403. doi:10.1161/01.CIR.0000085658.98621.49

    Article  PubMed  Google Scholar 

  50. Kai H, Muraishi A, Sugiu Y, Nishi H, Seki Y, Kuwahara F, Kimura A, Kato H, Imaizumi T (1998) Expression of proto-oncogenes and gene mutation of sarcomeric proteins in patients with hypertrophic cardiomyopathy. Circ Res 83:594–601. doi:10.1161/01.RES.83.6.594

    Article  CAS  PubMed  Google Scholar 

  51. Kain V, Prabhu SD, Halade GV (2014) Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res Cardiol 109:444. doi:10.1007/s00395-014-0444-7

    Article  PubMed  CAS  Google Scholar 

  52. Kakkar R, Lee RT (2010) Intramyocardial Fibroblast Myocyte Communication. Circ Res 106:47–57. doi:10.1161/CIRCRESAHA.109.207456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kamkin A, Kiseleva I, Lozinsky I, Scholz H (2005) Electrical interaction of mechanosensitive fibroblasts and myocytes in the heart. Basic Res Cardiol 100:337–345. doi:10.1007/s00395-005-0529-4

    Article  CAS  PubMed  Google Scholar 

  54. Klingberg F, Chow ML, Koehler A, Boo S, Buscemi L, Quinn TM, Costell M, Alman BA, Genot E, Hinz B (2014) Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J Cell Biol 207:283–297. doi:10.1083/jcb.201402006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kohda Y, Kanematsu M, Kono T, Terasaki F, Tanaka T (2009) Protein O-glycosylation induces collagen expression and contributes to diabetic cardiomyopathy in rat cardiac fibroblasts. J Pharmacol Sci 111:446–450. doi:10.1254/jphs.09236SC

    Article  CAS  PubMed  Google Scholar 

  56. Krishnamurthy P, Subramanian V, Singh M, Singh K (2007) Beta1 integrins modulate beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Hypertension 49:865–872. doi:10.1161/01.HYP.0000258703.36986.13

    Article  CAS  PubMed  Google Scholar 

  57. Kruithof BPT, Krawitz SA, Gaussin V (2007) Atrioventricular valve development during late embryonic and postnatal stages involves condensation and extracellular matrix remodeling. Dev Biol 302:208–217. doi:10.1016/j.ydbio.2006.09.024

    Article  CAS  PubMed  Google Scholar 

  58. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024. doi:10.1038/nbt1327

    Article  CAS  PubMed  Google Scholar 

  59. LaFramboise WA, Scalise D, Stoodley P, Graner SR, Guthrie RD, Magovern JA, Becich MJ (2007) Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. Am J Physiol Cell Physiol 292:C1799–C1808. doi:10.1152/ajpcell.00166.2006

    Article  CAS  PubMed  Google Scholar 

  60. Laser M, Willey CD, Jiang W, Cooper G, Menick DR, Zile MR, Kuppuswamy D (2000) Integrin activation and focal complex formation in cardiac hypertrophy. J Biol Chem 275:35624–35630. doi:10.1074/jbc.M006124200

    Article  CAS  PubMed  Google Scholar 

  61. Li R, Wu Y, Manso AM, Gu Y, Liao P, Israeli S, Yajima T, Nguyen U, Huang MS, Dalton ND, Peterson KL, Ross RS (2012) Beta1 integrin gene excision in the adult murine cardiac myocyte causes defective mechanical and signaling responses. Am J Pathol 180:952–962. doi:10.1016/j.ajpath.2011.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li SC, Wang L, Jiang H, Acevedo J, Chang AC, Loudon WG (2009) Stem cell engineering for treatment of heart diseases: potentials and challenges. Cell Biol Int 33:255–267. doi:10.1016/j.cellbi.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  63. Lim SL, Lam CSP, Segers VFM, Brutsaert DL, De Keulenaer GW (2015) Cardiac endothelium-myocyte interaction: clinical opportunities for new heart failure therapies regardless of ejection fraction. Eur Heart J 36:2050–2060. doi:10.1093/eurheartj/ehv132

    Article  CAS  PubMed  Google Scholar 

  64. Lincoln J, Florer JB, Deutsch GH, Wenstrup RJ, Yutzey KE (2006) ColVa1 and ColXIa1 are required for myocardial morphogenesis and heart valve development. Dev Dyn 235:3295–3305. doi:10.1002/dvdy.20980

    Article  CAS  PubMed  Google Scholar 

  65. Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94:1852–1856. doi:10.1073/pnas.94.5.1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lockhart M, Wirrig E, Phelps A, Wessels A (2011) Extracellular matrix and heart development. Birth Defects Res A Clin Mol Teratol 91:535–550. doi:10.1002/bdra.20810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lopez-Sanchez C, Climent V, Schoenwolf G, Alvarez I, Garcia-Martinez V (2002) Induction of cardiogenesis by Hensen’s node and fibroblast growth factors. Cell Tissue Res 309:237–249. doi:10.1007/s00441-002-0567-2

    Article  CAS  PubMed  Google Scholar 

  68. Lu N, Carracedo S, Ranta J, Heuchel R, Soininen R, Gullberg D (2010) The human α11 integrin promoter drives fibroblast-restricted expression in vivo and is regulated by TGF-β1 in a Smad- and Sp1-dependent manner. Matrix Biol 29:166–176. doi:10.1016/j.matbio.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  69. Ma L-J, Yang H, Gaspert A, Carlesso G, Barty MM, Davidson JM, Sheppard D, Fogo AB (2003) Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(−/−) mice. Am J Pathol 163:1261–1273. doi:10.1016/S0002-9440(10)63486-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maitra N, Flink IL, Bahl JJ, Morkin E (2000) Expression of alpha and beta integrins during terminal differentiation of cardiomyocytes. Cardiovasc Res 47:715–725. doi:10.1016/S0008-6363(00)00140-1

    Article  CAS  PubMed  Google Scholar 

  71. Manavski Y, Carmona G, Bennewitz K, Tang Z, Zhang F, Sakurai A, Zeiher AM, Gutkind JS, Li X, Kroll J, Dimmeler S, Chavakis E (2014) Brag2 differentially regulates β1- and β3-integrin-dependent adhesion in endothelial cells and is involved in developmental and pathological angiogenesis. Basic Res Cardiol 109:404. doi:10.1007/s00395-014-0404-2

    Article  PubMed  CAS  Google Scholar 

  72. Margadant C, Sonnenberg A (2010) Integrin–TGF-β crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11:97–105. doi:10.1038/embor.2009.276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Martire A, Bedada FB, Uchida S, Pöling J, Krüger M, Warnecke H, Richter M, Kubin T, Herold S, Braun T (2016) Mesenchymal stem cells attenuate inflammatory processes in the heart and lung via inhibition of TNF signaling. Basic Res Cardiol 111:54. doi:10.1007/s00395-016-0573-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mercer SE, Odelberg SJ, Simon H-G (2013) A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev Biol 382:457–469. doi:10.1016/j.ydbio.2013.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Millard M, Odde S, Neamati N (2011) Integrin targeted therapeutics. Theranostics 1:154–188. doi:10.7150/thno/v01p0154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miragoli M, Salvarani N, Rohr S (2007) Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res. doi:10.1161/CIRCRESAHA.107.160549

    PubMed  Google Scholar 

  77. Mohamed TMA, Abou-Leisa R, Stafford N, Maqsood A, Zi M, Prehar S, Baudoin-Stanley F, Wang X, Neyses L, Cartwright EJ, Oceandy D (2016) The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy. Nat Commun 7:11074. doi:10.1038/ncomms11074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Müller J, Gorressen S, Grandoch M, Feldmann K, Kretschmer I, Lehr S, Ding Z, Schmitt JP, Schrader J, Garbers C, Heusch G, Kelm M, Scheller J, Fischer JW (2014) Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction. Basic Res Cardiol 109:440. doi:10.1007/s00395-014-0440-y

    Article  PubMed  CAS  Google Scholar 

  79. Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118:4731–4739. doi:10.1242/jcs.02605

    Article  CAS  PubMed  Google Scholar 

  80. Nicoletti A, Michel JB (1999) Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors. Cardiovas Res 41:532–543. doi:10.1016/S0008-6363(98)00305-8

    Article  CAS  Google Scholar 

  81. Oyamada M, Kimura H, Oyamada Y, Miyamoto A, Ohshika H, Mori M (1994) The expression, phosphorylation, and localization of connexin 43 and gap-junctional intercellular communication during the establishment of a synchronized contraction of cultured neonatal rat cardiac myocytes. Exp Cell Res 212:351–358. doi:10.1006/excr.1994.1154

    Article  CAS  PubMed  Google Scholar 

  82. Pellieux C, Foletti A, Peduto G, Aubert J-F, Nussberger J, Beermann F, Brunner H-R, Pedrazzini T (2001) Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin Invest 108:1843–1851. doi:10.1172/JCI13627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Petrov VV, Fagard RH, Lijnen PJ (2002) Stimulation of collagen production by transforming growth factor-beta1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension 39:258–263. doi:10.1161/hy0202.103268

    Article  CAS  PubMed  Google Scholar 

  84. Pham CG, Harpf AE, Keller RS, Vu HT, Shai S-Y, Loftus JC, Ross RS (2000) Striated muscle-specific β1D-integrin and FAK are involved in cardiac myocyte hypertrophic response pathway. Am J Physiol Heart Circ Physiol 279:H2916–H2926. http://ajpheart.physiology.org/content/279/6/H2916.full.pdf+html

  85. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, Tallquist MD (2016) Revisiting cardiac cellular composition novelty and significance. Circ Res 118:400–409. doi:10.1161/CIRCRESAHA.115.307778

    Article  CAS  PubMed  Google Scholar 

  86. Popova SN, Barczyk M, Tiger CF, Beertsen W, Zigrino P, Aszodi A, Miosge N, Forsberg E, Gullberg D (2007) alpha11beta1 integrin-dependent regulation of periodontal ligament function in the erupting mouse incisor. Mol Cell Biol 27:4306–4316. doi:10.1128/MCB.00041-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu J-D, Srivastava D (2015) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598. doi:10.1038/nature11044

    Article  CAS  Google Scholar 

  88. Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng W, Wang Y, Langer R, Freed LE, Vunjak-Novakovic G (2008) Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res 86A:713–724. doi:10.1002/jbm.a.31578

    Article  CAS  Google Scholar 

  89. Rahkonen O, Su M, Hakovrita H, Koskivirta I, Hormuzdi SG, Vuorio E, Bornstein P, Penttinen R (2004) Mice with a deletion in the first intron of the col1a1 gene develop age-dependent aortic dissection and rupture. Circ Res 94:83–90. doi:10.1161/01.RES.0000108263.74520.15

    Article  CAS  PubMed  Google Scholar 

  90. Ross RS (2002) The extracellular connections: the role of integrins in myocardial remodeling. J Card Fail 8:S326–S331. doi:10.1054/jcaf.2002.129263

    Article  CAS  PubMed  Google Scholar 

  91. Ross RS, Pham C, Shai SY, Goldhaber JI, Fenczik C, Glembotski CC, Ginsberg MH, Loftus JC (1998) Beta1 integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res 82:1160–1172. doi:10.1161/01.RES.82.11.1160

    Article  CAS  PubMed  Google Scholar 

  92. Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K, Ouyang M, Schwartz MA (2013) Integrins in mechanotransduction. Curr Opin Cell Biol 25:613–618. doi:10.1016/j.ceb.2013.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341:126–140. doi:10.1016/j.ydbio.2009.10.026

    Article  CAS  PubMed  Google Scholar 

  94. Rupp PA, Visconti RP, Czirok A, Cheresh DA, Little CD (2008) Matrix metalloproteinase 2-integrin alphavbeta3 binding is required for mesenchymal cell invasive activity but not epithelial locomotion: a computational time-lapse study. Mol Biol Cell 19:5529–5540. doi:10.1091/mbc.E07-05-0480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rüegg C, Dormond O, Mariotti A (2004) Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis. Biochim Biophys Acta 1654:51–67. doi:10.1016/j.bbcan.2003.09.003

    PubMed  Google Scholar 

  96. Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289:H2291–H2301. doi:10.1152/ajpheart.00749.2005

    Article  CAS  PubMed  Google Scholar 

  97. Schiro JA, Chan BM, Roswit WT, Kassner PD, Pentland AP, Hemler ME, Eisen AZ, Kupper TS (1991) Integrin alpha 2 beta 1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell 67:403–410. doi:10.1016/0092-8674(91)90191-Z

    Article  CAS  PubMed  Google Scholar 

  98. Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2:a005066. doi:10.1101/cshperspect.a005066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shai S-Y, Harpf AE, Babbitt CJ, Jordan MC, Fishbein MC, Chen J, Omura M, Leil TA, Becker KD, Jiang M, Smith DJ, Cherry SR, Loftus JC, Ross RS (2002) Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res 90:458–464. doi:10.1161/hh0402.105790

    Article  CAS  PubMed  Google Scholar 

  100. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300. doi:10.1038/nrm2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shen B, Zhao X, O’Brien KA, Stojanovic-Terpo A, Delaney MK, Kim K, Cho J, Lam SCT, Du X (2015) A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature 503:131–135. doi:10.1038/nature12613

    Article  CAS  Google Scholar 

  102. Simpson DG, Terracio L, Terracio M, Price RL, Turner DC, Borg TK (1994) Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol 161:89–105. doi:10.1002/jcp.1041610112

    Article  CAS  PubMed  Google Scholar 

  103. Simpson DL, Mishra R, Sharma S, Goh SK, Deshmukh S, Kaushal S (2012) a strong regenerative ability of cardiac stem cells derived from neonatal hearts. Circulation 126:S46–S53. doi:10.1161/CIRCULATIONAHA.111.084699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN (2015) Heart repair by reprogramming non-myocytes with cardiac transcriptionfactors. Nature 485:599–604. doi:10.1038/nature11139

    Article  CAS  Google Scholar 

  105. Spadaccio C, Mozetic P, Nappi F, Nenna A, Sutherland F, Trombetta M, Chello M, Rainer A (2016) Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Res Cardiol 111:16. doi:10.1007/s00395-016-0534-9

    Article  PubMed  CAS  Google Scholar 

  106. Sun M, Opavsky MA, Stewart DJ, Rabinovitch M, Dawood F, Wen W-H, Liu PP (2003) Temporal response and localization of integrins beta1 and beta3 in the heart after myocardial infarction: regulation by cytokines. Circulation 107:1046–1052. doi:10.1161/01.CIR.0000051363.86009.3C

    Article  CAS  PubMed  Google Scholar 

  107. Sun Z, Zhou D, Xie X, Wang S, Wang Z, Zhao W, Xu H, Zheng L (2016) Cross-talk between macrophages and atrial myocytes in atrial fibrillation. Basic Res Cardiol 111:63. doi:10.1007/s00395-016-0584-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Talior-Volodarsky I, Arora PD, Wang Y, Zeltz C, Connelly KA, Gullberg D, McCulloch CA (2014) Glycated collagen induces α11 integrin expression through TGF-β2 and Smad3. J Cell Physiol 230:327–336. doi:10.1002/jcp.24708

    Article  CAS  Google Scholar 

  109. Talior-Volodarsky I, Connelly KA, Arora PD, Gullberg D, McCulloch CA (2012) Alpha11 integrin stimulates myofibroblast differentiation in diabetic cardiomyopathy. Cardiovasc Res 96:265–275. doi:10.1093/cvr/cvs259

    Article  CAS  PubMed  Google Scholar 

  110. Tao G, Levay AK, Peacock JD, Huk DJ, Both SN, Purcell NH, Pinto JR, Galantowicz ML, Koch M, Lucchesi PA, Birk DE, Lincoln J (2012) Collagen XIV is important for growth and structural integrity of the myocardium. J J Mol Cell Cardiol 53:626–638. doi:10.1016/j.yjmcc.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  111. Terracio L, Rubin K, Gullberg D, Balog E, Carver W, Jyring R, Borg TK (1991) Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res 68:734–744. doi:10.1161/01.RES.68.3.734

    Article  CAS  PubMed  Google Scholar 

  112. Thorsteinsdóttir S, Roelen BA, Freund E, Gaspar AC, Sonnenberg A, Mummery CL (1995) Expression patterns of laminin receptor splice variants alpha 6A beta 1 and alpha 6B beta 1 suggest different roles in mouse development. Dev Dyn 204:240–258. doi:10.1002/aja.1002040304

    Article  PubMed  Google Scholar 

  113. Tiger C-F, Fougerousse F, Grundström G, Velling T, Gullberg D (2001) α11β1 integrin is a receptor for interstitial collagens involved in cell migration and collagen reorganization on mesenchymal nonmuscle cells. Dev Biol 237:116–129. doi:10.1006/dbio.2001.0363

    Article  CAS  PubMed  Google Scholar 

  114. Torsoni AS, Constancio SS, Nadruz W, Hanks SK, Franchini KG (2003) Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 93:140–147. doi:10.1161/01.RES.0000081595.25297.1B

    Article  CAS  PubMed  Google Scholar 

  115. Valencik ML, McDonald JA (2001) Cardiac expression of a gain-of-function alpha(5)-integrin results in perinatal lethality. Am J Physiol Heart Circ Physiol 280:H361–7. http://ajpheart.physiology.org/content/280/1/H361.short

  116. Wang Y-J, Sung RJ, Lin M-W, Wu S-N (2006) Contribution of BK(Ca)-channel activity in human cardiac fibroblasts to electrical coupling of cardiomyocytes-fibroblasts. J Membr Biol 213:175–185. doi:10.1007/s00232-007-0027-8

    Article  PubMed  CAS  Google Scholar 

  117. Wei L, Wang L, Carson JA, Agan JE, Imanaka-Yoshida K, Schwartz RJ (2001) beta1 integrin and organized actin filaments facilitate cardiomyocyte-specific RhoA-dependent activation of the skeletal alpha-actin promoter. FASEB J 15:785–796. doi:10.1096/fj.00-026com

    Article  CAS  PubMed  Google Scholar 

  118. Weitzman JB, Chen A, Hemler ME (1995) Investigation of the role of beta 1 integrins in cell-cell adhesion. J Cell Sci 108 (Pt 11):3635–3644. http://jcs.biologists.org/content/108/11/3635.long

  119. Wipff P, Hinz B (2008) Integrins and the activation of latent transforming growth factor β1—An intimate relationship. Euro J Cell Biol 87:601–615. doi:10.1016/j.ejcb.2008.01.012

    Article  CAS  Google Scholar 

  120. Wipff P-J, Rifkin DB, Meister J-J, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179:1311–1323. doi:10.1083/jcb.200704042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu JE, Santoro SA (1994) Complex patterns of expression suggest extensive roles for the alpha 2 beta 1 integrin in murine development. Dev Dyn 199:292–314. doi:10.1002/aja.1001990405

    Article  CAS  PubMed  Google Scholar 

  122. Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121:549–560. http://dev.biologists.org/content/121/2/549.long

  123. Yeung DF, Boom NK, Guo H, Lee DS, Schultz SE, Tu JV (2012) Trends in the incidence and outcomes of heart failure in Ontario, Canada: 1997 to 2007. CMAJ 184:E765–E773. doi:10.1503/cmaj.111958

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J, Palecek SP, Lyons GE, Thomson JA, Herron TJ, Jalife J, Kamp TJ (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111:1125–1136. doi:10.1161/CIRCRESAHA.112.273144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41. doi:10.1161/CIRCRESAHA.108.192237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang Y, Kanter EM, Laing JG, Aprhys C, Johns DC, Kardami E, Yamada KA (2008) Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts. Cell Commun Adhes 15:289–303. doi:10.1080/15419060802198736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an Ontario Heart and Stroke Foundation grant (NA-6736) to K.A.C and C.A.M, and (NA-7201) to K.A.C. C.A.M was supported by a Canada Research Chair in Matrix Dynamics. K.A.C. was supported by a CIHR New Investigator Award and an Early Researcher Award from the Ministry of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim A. Connelly.

Ethics declarations

Conflicts of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civitarese, R.A., Kapus, A., McCulloch, C.A. et al. Role of integrins in mediating cardiac fibroblast–cardiomyocyte cross talk: a dynamic relationship in cardiac biology and pathophysiology. Basic Res Cardiol 112, 6 (2017). https://doi.org/10.1007/s00395-016-0598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0598-6

Keywords

Navigation