Skip to main content
Log in

Studies on the role of apoptosis after transient myocardial ischemia: genetic deletion of the executioner caspases-3 and -7 does not limit infarct size and ventricular remodeling

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Although it is widely accepted that apoptosis may contribute to cell death in myocardial infarction, experimental evidence suggests that adult cardiomyocytes repress the expression of the caspase-dependent apoptotic pathway. The aim of this study was to analyze the contribution of caspase-mediated apoptosis to myocardial ischemia-reperfusion injury. Cardiac-specific caspase-3 deficient/full caspase-7-deficient mice (Casp3/7DKO) and wild type control mice (WT) were subjected to in situ ischemia by left anterior coronary artery ligation for 45 min followed by 24 h or 28 days of reperfusion. Heart function was assessed using M-mode echocardiography. Deletion of caspases did not modify neither infarct size determined by triphenyltetrazolium staining after 24 h of reperfusion (40.0 ± 5.1 % in WT vs. 36.2 ± 3.6 % in Casp3/7DKO), nor the scar area measured by pricosirius red staining after 28 days of reperfusion (41.1 ± 5.4 % in WT vs. 44.6 ± 8.7 % in Casp3/7DKO). Morphometric and echocardiographic studies performed 28 days after the ischemic insult revealed left ventricular dilation and severe cardiac dysfunction without statistically significant differences between WT and Casp3/7DKO groups. These data demonstrate that the executioner caspases-3 and -7 do not significantly contribute to cardiomyocyte death induced by transient coronary occlusion and provide the first evidence obtained in an in vivo model that argues against a relevant role of apoptosis through the canonical caspase pathway in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adderley SR, Fitzgerald DJ (2000) Glycoprotein IIb/IIIa antagonists induce apoptosis in rat cardiomyocytes by caspase-3 activation. J Biol Chem 275:5760–5766. doi:10.1074/jbc.275.8.5760

    Article  CAS  PubMed  Google Scholar 

  2. Ahmad F, Lal H, Zhou J, Vagnozzi RJ, Yu JE, Shang X, Woodgett JR, Gao E, Force T (2014) Cardiomyocyte-specific deletion of Gsk3alpha mitigates post-myocardial infarction remodeling, contractile dysfunction, and heart failure. J Am Coll Cardiol 64:696–706. doi:10.1016/j.jacc.2014.04.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alam MR, Baetz D, Ovize M (2015) Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J Mol Cell Cardiol 78C:80–89. doi:10.1016/j.yjmcc.2014.09.026

    Article  Google Scholar 

  4. Bahi N, Zhang J, Llovera M, Ballester M, Comella JX, Sanchis D (2006) Switch from caspase-dependent to caspase-independent death during heart development: essential role of endonuclease G in ischemia-induced DNA processing of differentiated cardiomyocytes. J Biol Chem 281:22943–22952. doi:10.1074/jbc.M601025200

    Article  CAS  PubMed  Google Scholar 

  5. Barrabes JA, Garcia-Dorado D, Ruiz-Meana M, Piper HM, Solares J, Gonzalez MA, Oliveras J, Herrejon MP, Soler Soler J (1996) Myocardial segment shrinkage during coronary reperfusion in situ. Relation to hypercontracture and myocardial necrosis. Pflugers Arch 431:519–526. doi:10.1007/BF02191898

    Article  CAS  PubMed  Google Scholar 

  6. Berger AB, Sexton KB, Bogyo M (2006) Commonly used caspase inhibitors designed based on substrate specificity profiles lack selectivity. Cell Res 16:961–963. doi:10.1038/sj.cr.7310112

    Article  CAS  PubMed  Google Scholar 

  7. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290. doi:10.1146/annurev.cellbio.15.1.269

    Article  CAS  PubMed  Google Scholar 

  8. Burlina A, Rizzotti P, Plebani M, Cocco C, Vassanelli C, Menegatti G (1984) CPK and CPK-MB in the early diagnosis of acute myocardial infarction and prediction of infarcted area. Clin Biochem 17:356–361. doi:10.1016/S0009-9120(84)90722-7

    Article  CAS  PubMed  Google Scholar 

  9. Cardona M, Lopez JA, Serafin A, Rongvaux A, Inserte J, Garcia-Dorado D, Flavell R, Llovera M, Canas X, Vazquez J, Sanchis D (2015) Executioner caspase-3 and 7 deficiency reduces myocyte number in the developing mouse heart. PLoS One 10:e0131411. doi:10.1371/journal.pone.0131411

    Article  PubMed  PubMed Central  Google Scholar 

  10. Condorelli G, Roncarati R, Ross J Jr, Pisani A, Stassi G, Todaro M, Trocha S, Drusco A, Gu Y, Russo MA, Frati G, Jones SP, Lefer DJ, Napoli C, Croce CM (2001) Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 98:9977–9982. doi:10.1073/pnas.161120198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957–970. doi:10.1161/01.RES.0000148632.35500.d9

    Article  CAS  PubMed  Google Scholar 

  12. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219. doi:10.1016/S0092-8674(04)00046-7

    Article  CAS  PubMed  Google Scholar 

  13. Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirshenbaum LA, Hahn HS, Robbins J, Jones WK, Dorn GW (2007) Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 117:2825–2833. doi:10.1172/JCI32490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Freude B, Masters TN, Robicsek F, Fokin A, Kostin S, Zimmermann R, Ullmann C, Lorenz-Meyer S, Schaper J (2000) Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol 32:197–208. doi:10.1006/jmcc.1999.1066

    Article  CAS  PubMed  Google Scholar 

  15. Gao XM, Dart AM, Dewar E, Jennings G, Du XJ (2000) Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovasc Res 45:330–338. doi:10.1016/S0008-6363(99)00274-6

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Dorado D, Inserte J, Ruiz-Meana M, Gonzalez MA, Solares J, Julia M, Barrabes JA, Soler-Soler J (1997) Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation 96:3579–3586. doi:10.1161/01.CIR.96.10.3579

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Dorado D, Ruiz-Meana M, Piper HM (2009) Lethal reperfusion injury in acute myocardial infarction: facts and unresolved issues. Cardiovasc Res 83:165–168. doi:10.1093/cvr/cvp185

    Article  CAS  PubMed  Google Scholar 

  18. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628. doi:10.1172/JCI117504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grunenfelder J, Miniati DN, Murata S, Falk V, Hoyt EG, Kown M, Koransky ML, Robbins RC (2001) Upregulation of Bcl-2 through caspase-3 inhibition ameliorates ischemia/reperfusion injury in rat cardiac allografts. Circulation 104:I202–I206. doi:10.1161/hc37t1.094833

    Article  CAS  PubMed  Google Scholar 

  20. Holly TA, Drincic A, Byun Y, Nakamura S, Harris K, Klocke FJ, Cryns VL (1999) Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 31:1709–1715. doi:10.1006/jmcc.1999.1006

    Article  CAS  PubMed  Google Scholar 

  21. Inserte J, Molla B, Aguilar R, Traves PG, Barba I, Martin-Sanz P, Bosca L, Casado M, Garcia-Dorado D (2009) Constitutive COX-2 activity in cardiomyocytes confers permanent cardioprotection constitutive COX-2 expression and cardioprotection. J Mol Cell Cardiol 46:160–168. doi:10.1016/j.yjmcc.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  22. Irvine RA, Adachi N, Shibata DK, Cassell GD, Yu K, Karanjawala ZE, Hsieh CL, Lieber MR (2005) Generation and characterization of endonuclease G null mice. Mol Cell Biol 25:294–302. doi:10.1128/MCB.25.1.294-302.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107

    CAS  PubMed  Google Scholar 

  24. Kataoka Y, Shibata R, Ohashi K, Kambara T, Enomoto T, Uemura Y, Ogura Y, Yuasa D, Matsuo K, Nagata T, Oba T, Yasukawa H, Numaguchi Y, Sone T, Murohara T, Ouchi N (2014) Omentin prevents myocardial ischemic injury through AMP-activated protein kinase- and Akt-dependent mechanisms. J Am Coll Cardiol 63:2722–2733. doi:10.1016/j.jacc.2014.03.032

    Article  CAS  PubMed  Google Scholar 

  25. Kelle S, Roes SD, Klein C, Kokocinski T, de Roos A, Fleck E, Bax JJ, Nagel E (2009) Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 54:1770–1777. doi:10.1016/j.jacc.2009.07.027

    Article  PubMed  Google Scholar 

  26. Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32:1552–1562. doi:10.1161/ATVBAHA.111.224915

    Article  CAS  PubMed  Google Scholar 

  27. Kovacs P, Bak I, Szendrei L, Vecsernyes M, Varga E, Blasig IE, Tosaki A (2001) Non-specific caspase inhibition reduces infarct size and improves post-ischaemic recovery in isolated ischaemic/reperfused rat hearts. Naunyn Schmiedebergs Arch Pharmacol 364:501–507. doi:10.1007/s002100100483

    Article  CAS  PubMed  Google Scholar 

  28. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851. doi:10.1126/science.1115035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li J, Li C, Zhang D, Shi D, Qi M, Feng J, Yuan T, Xu X, Liang D, Xu L, Zhang H, Liu Y, Chen J, Ye J, Jiang W, Cui Y, Zhang Y, Peng L, Zhou Z, Chen YH (2014) SNX13 reduction mediates heart failure through degradative sorting of apoptosis repressor with caspase recruitment domain. Nat Commun 5:5177. doi:10.1038/ncomms6177

    Article  CAS  PubMed  Google Scholar 

  30. Li L, Wang X, Chen W, Qi H, Jiang DS, Huang L, Huang F, Wang L, Li H, Chen X (2015) Regulatory role of CARD3 in left ventricular remodelling and dysfunction after myocardial infarction. Basic Res Cardiol 110:56. doi:10.1007/s00395-015-0515-4

    Article  PubMed  Google Scholar 

  31. Liao YH, Xia N, Zhou SF, Tang TT, Yan XX, Lv BJ, Nie SF, Wang J, Iwakura Y, Xiao H, Yuan J, Jevallee H, Wei F, Shi GP, Cheng X (2012) Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. J Am Coll Cardiol 59:420–429. doi:10.1016/j.jacc.2011.10.863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ling H, Gray CB, Zambon AC, Grimm M, Gu Y, Dalton N, Purcell NH, Peterson K, Brown JH (2013) Ca2+/calmodulin-dependent protein kinase II delta mediates myocardial ischemia/reperfusion injury through nuclear factor-kappaB. Circ Res 112:935–944. doi:10.1161/CIRCRESAHA.112.276915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lucas A, Mialet-Perez J, Daviaud D, Parini A, Marber MS, Sicard P (2015) Gadd45gamma regulates cardiomyocyte death and post-myocardial infarction left ventricular remodelling. Cardiovasc Res 108:254–267. doi:10.1093/cvr/cvv219

    Article  PubMed  Google Scholar 

  34. Maroko PR, Libby P, Ginks WR, Bloor CM, Shell WE, Sobel BE, Ross J Jr (1972) Coronary artery reperfusion. I. Early effects on local myocardial function and the extent of myocardial necrosis. J Clin Invest 51:2710–2716. doi:10.1172/JCI107090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McDermott-Roe C, Ye J, Ahmed R, Sun XM, Serafin A, Ware J, Bottolo L, Muckett P, Canas X, Zhang J, Rowe GC, Buchan R, Lu H, Braithwaite A, Mancini M, Hauton D, Marti R, Garcia-Arumi E, Hubner N, Jacob H, Serikawa T, Zidek V, Papousek F, Kolar F, Cardona M, Ruiz-Meana M, Garcia-Dorado D, Comella JX, Felkin LE, Barton PJ, Arany Z, Pravenec M, Petretto E, Sanchis D, Cook SA (2011) Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 478:114–118. doi:10.1038/nature10490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McFadden DG, Barbosa AC, Richardson JA, Schneider MD, Srivastava D, Olson EN (2005) The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 132:189–201. doi:10.1242/dev.01562

    Article  CAS  PubMed  Google Scholar 

  37. Minatoguchi S, Kariya T, Uno Y, Arai M, Nishida Y, Hashimoto K, Wang N, Aoyama T, Takemura G, Fujiwara T, Fujiwara H (2001) Caspase-dependent and serine protease-dependent DNA fragmentation of myocytes in the ischemia-reperfused rabbit heart: these inhibitors do not reduce infarct size. Jpn Circ J 65:907–911. doi:10.1253/jcj.65.907

    Article  CAS  PubMed  Google Scholar 

  38. Miyazaki S, Fujiwara H, Onodera T, Kihara Y, Matsuda M, Wu DJ, Nakamura Y, Kumada T, Sasayama S, Kawai C et al (1987) Quantitative analysis of contraction band and coagulation necrosis after ischemia and reperfusion in the porcine heart. Circulation 75:1074–1082. doi:10.1161/01.CIR.75.5.1074

    Article  CAS  PubMed  Google Scholar 

  39. Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci U S A 96:8144–8149. doi:10.1073/pnas.96.14.8144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JP (2013) Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int J Cardiol 165:410–422. doi:10.1016/j.ijcard.2012.03.055

    Article  PubMed  Google Scholar 

  41. Ohno M, Takemura G, Ohno A, Misao J, Hayakawa Y, Minatoguchi S, Fujiwara T, Fujiwara H (1998) “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation 98:1422–1430. doi:10.1161/01.CIR.98.14.1422

    Article  CAS  PubMed  Google Scholar 

  42. Okamura T, Miura T, Takemura G, Fujiwara H, Iwamoto H, Kawamura S, Kimura M, Ikeda Y, Iwatate M, Matsuzaki M (2000) Effect of caspase inhibitors on myocardial infarct size and myocyte DNA fragmentation in the ischemia-reperfused rat heart. Cardiovasc Res 45:642–650. doi:10.1016/S0008-6363(99)00271-0

    Article  CAS  PubMed  Google Scholar 

  43. Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, Tikkanen I (2001) Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 280:H2726–H2731

    CAS  PubMed  Google Scholar 

  44. Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300. doi:10.1016/S0008-6363(98)00033-9

    Article  CAS  PubMed  Google Scholar 

  45. Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, Wu Y, Yordy B, Lakhani SA, Kuan CY, Taniguchi T, Shadel GS, Chen ZJ, Iwasaki A, Flavell RA (2014) Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159:1563–1577. doi:10.1016/j.cell.2014.11.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruetten H, Badorff C, Ihling C, Zeiher AM, Dimmeler S (2001) Inhibition of caspase-3 improves contractile recovery of stunned myocardium, independent of apoptosis-inhibitory effects. J Am Coll Cardiol 38:2063–2070. doi:10.1016/S0735-1097(01)01670-9

    Article  CAS  PubMed  Google Scholar 

  47. Ruiz-Meana M, Abellan A, Miro-Casas E, Garcia-Dorado D (2007) Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol 102:542–552. doi:10.1007/s00395-007-0675-y

    Article  CAS  PubMed  Google Scholar 

  48. Sam F, Sawyer DB, Chang DL, Eberli FR, Ngoy S, Jain M, Amin J, Apstein CS, Colucci WS (2000) Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol Heart Circ Physiol 279:H422–H428

    CAS  PubMed  Google Scholar 

  49. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM (1997) Apoptosis in human acute myocardial infarction. Circulation 95:320–323. doi:10.1161/01.CIR.95.2.320

    Article  CAS  PubMed  Google Scholar 

  50. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104:253–256. doi:10.1161/01.CIR.104.3.253

    Article  CAS  PubMed  Google Scholar 

  51. Severino A, Campioni M, Straino S, Salloum FN, Schmidt N, Herbrand U, Frede S, Toietta G, Di Rocco G, Bussani R, Silvestri F, Piro M, Liuzzo G, Biasucci LM, Mellone P, Feroce F, Capogrossi M, Baldi F, Fandrey J, Ehrmann M, Crea F, Abbate A, Baldi A (2007) Identification of protein disulfide isomerase as a cardiomyocyte survival factor in ischemic cardiomyopathy. J Am Coll Cardiol 50:1029–1037. doi:10.1016/j.jacc.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  52. Toldo S, Breckenridge DG, Mezzaroma E, Van Tassell BW, Shryock J, Kannan H, Phan D, Budas G, Farkas D, Lesnefsky E, Voelkel N, Abbate A (2012) Inhibition of apoptosis signal-regulating kinase 1 reduces myocardial ischemia-reperfusion injury in the mouse. J Am Heart Assoc 1:e002360. doi:10.1161/JAHA.112.002360

    Article  PubMed  PubMed Central  Google Scholar 

  53. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042. doi:10.1038/sj.cdd.4401088

    Article  PubMed  Google Scholar 

  54. Vilahur G, Juan-Babot O, Pena E, Onate B, Casani L, Badimon L (2011) Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. J Mol Cell Cardiol 50:522–533. doi:10.1016/j.yjmcc.2010.12.021

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Wang X, Jasmin JF, Lau WB, Li R, Yuan Y, Yi W, Chuprun K, Lisanti MP, Koch WJ, Gao E, Ma XL (2012) Essential role of caveolin-3 in adiponectin signalsome formation and adiponectin cardioprotection. Arterioscler Thromb Vasc Biol 32:934–942. doi:10.1161/ATVBAHA.111.242164

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yaoita H, Ogawa K, Maehara K, Maruyama Y (1998) Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97:276–281. doi:10.1161/01.CIR.97.3.276

    Article  CAS  PubMed  Google Scholar 

  57. Yue TL, Wang C, Romanic AM, Kikly K, Keller P, DeWolf WE Jr, Hart TK, Thomas HC, Storer B, Gu JL, Wang X, Feuerstein GZ (1998) Staurosporine-induced apoptosis in cardiomyocytes: a potential role of caspase-3. J Mol Cell Cardiol 30:495–507. doi:10.1006/jmcc.1997.0614

    Article  CAS  PubMed  Google Scholar 

  58. Zhang J, Ye J, Altafaj A, Cardona M, Bahi N, Llovera M, Canas X, Cook SA, Comella JX, Sanchis D (2011) EndoG links Bnip3-induced mitochondrial damage and caspase-independent DNA fragmentation in ischemic cardiomyocytes. PLoS One 6:e17998. doi:10.1371/journal.pone.0017998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao ZQ, Velez DA, Wang NP, Hewan-Lowe KO, Nakamura M, Guyton RA, Vinten-Johansen J (2001) Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis 6:279–290. doi:10.1023/A:1011335525219

    Article  CAS  PubMed  Google Scholar 

  60. Zidar N, Dolenc-Strazar Z, Jeruc J, Stajer D (2006) Immunohistochemical expression of activated caspase-3 in human myocardial infarction. Virchows Arch 448:75–79. doi:10.1007/s00428-005-0073-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Ministry of Science (RETICS-RECAVA) Grants RD06/0014/0025 and RD12/0042/0035, Red de Investigación Cardiovascular, RIC to D.S; Grant 2009SGR-346 from the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) to D.S., Instituto de Salud Carlos III (PI-12/01738) and Ministerio de Economía y Competitividad (MINECO) (Grants SAF2010_19125 and SAF2013_44942 to D.S.). We thank Cristina Girón (D.S. lab) for their skilful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Sanchis or David Garcia-Dorado.

Ethics declarations

Conflict of interest

None.

Additional information

J. Inserte, M. Cardona and M. Poncelas-Nozal contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inserte, J., Cardona, M., Poncelas-Nozal, M. et al. Studies on the role of apoptosis after transient myocardial ischemia: genetic deletion of the executioner caspases-3 and -7 does not limit infarct size and ventricular remodeling. Basic Res Cardiol 111, 18 (2016). https://doi.org/10.1007/s00395-016-0537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0537-6

Keywords

Navigation