Skip to main content

Advertisement

Log in

N-acetylcysteine prevents electrical remodeling and attenuates cellular hypertrophy in epicardial myocytes of rats with ascending aortic stenosis

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Pressure overload is associated with cardiac hypertrophy and electrical remodeling. Here, we investigate the effects of the antioxidant N-acetylcysteine (NAC) on the cellular cardiac electrophysiology of female Sprague–Dawley rats with ascending aortic stenosis (AS). Rats were treated with NAC (1 g/kg body weight) or control solution 1 week before the intervention and in the week following AS or sham operation. Seven days after the operation, blood pressure and left ventricular pressure were measured before the heart was excised. Single cells were isolated from epicardial and endocardial layers of the left ventricular free wall and investigated using the whole-cell patch-clamp technique. Systolic blood pressure and left ventricular peak pressure were not significantly altered in the NAC group. NAC reduced the increase (p < 0.001) in the relative left ventricular weight (p < 0.05) as well as the increase (p < 0.001) in cell capacitance in epicardial (p < 0.05), but not in endocardial myocytes of AS animals. The L-type Ca2+ current (I CaL) was significantly increased by AS in epicardial (+19 % at 0 mV, p < 0.01) but not in endocardial myocytes. NAC completely prevented this increase in I CaL (p < 0.01). The current density of the transient outward K+ current (I to) was not affected by AS or NAC. Action potential duration to 90 % repolarization was significantly prolonged in epicardial (p < 0.01) as well as in endocardial (p < 0.001) cells of AS animals. NAC prevented the AP prolongation in epicardial myocytes only (p < 0.05). We conclude that reducing oxidative stress in pressure overload can prevent electrical remodeling and ameliorate hypertrophy in epicardial but not in endocardial myocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adamy C, Mulder P, Khouzami L, Andrieu-Abadie N, Defer N, Candiani G, Pavoine C, Caramelle P, Souktani R, Le CP, Perier M, Kirsch M, Damy T, Berdeaux A, Levade T, Thuillez C, Hittinger L, Pecker F (2007) Neutral sphingomyelinase inhibition participates to the benefits of N-acetylcysteine treatment in post-myocardial infarction failing heart rats. J Mol Cell Cardiol 43:344–353. doi:10.1016/j.yjmcc.2007.06.010

    Article  PubMed  CAS  Google Scholar 

  2. Armoundas AA, Wu R, Juang G, Marban E, Tomaselli GF (2001) Electrical and structural remodeling of the failing ventricle. Pharmacol Ther 92:213–230. doi:10.1016/S0163-7258(01)00171-1

    Article  PubMed  CAS  Google Scholar 

  3. Benitah JP, Vassort G (1999) Aldosterone upregulates Ca2+ current in adult rat cardiomyocytes. Circ Res 85:1139–1145. doi:10.1161/01.RES.85.12.1139

    Article  PubMed  CAS  Google Scholar 

  4. Benitah JP, Alvarez JL, Gomez AM (2010) L-type Ca2+ current in ventricular cardiomyocytes. J Mol Cell Cardiol 48:26–36. doi:10.1016/j.yjmcc.2009.07.026

    Article  PubMed  CAS  Google Scholar 

  5. Bourraindeloup M, Adamy C, Candiani G, Cailleret M, Bourin MC, Badoual T, Su JB, Adubeiro S, Roudot-Thoraval F, Dubois-Rande JL, Hittinger L, Pecker F (2004) N-acetylcysteine treatment normalizes serum tumor necrosis factor-α level and hinders the progression of cardiac injury in hypertensive rats. Circulation 110:2003–2009. doi:10.1161/01.CIR.0000143630.14515.7C

    Article  PubMed  CAS  Google Scholar 

  6. Bryant SM, Shipsey SJ, Hart G (1999) Normal regional distribution of membrane current density in rat left ventricle is altered in catecholamine-induced hypertrophy. Cardiovasc Res 42:391–401. doi:10.1016/S0008-6363(99)00033-4

    Article  PubMed  CAS  Google Scholar 

  7. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–805. doi:10.1161/01.RES.0000099504.30207.F5

    Google Scholar 

  8. Cabassi A, Dumont EC, Girouard H, Bouchard JF, Le JM, Lamontagne D, Besner JG, de CJ (2001) Effects of chronic N-acetylcysteine treatment on the actions of peroxynitrite on aortic vascular reactivity in hypertensive rats. J Hypertens 19:1233–1244

  9. Chen X, Nakayama H, Zhang X, Ai X, Harris DM, Tang M, Zhang H, Szeto C, Stockbower K, Berretta RM, Eckhart AD, Koch WJ, Molkentin JD, Houser SR (2010) Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy. J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2010.11.012

    Google Scholar 

  10. Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA, Guerchicoff A, Pollevick GD, Chan TY, Kabir MG, Cheng SH, Husain M, Antzelevitch C, Srivastava D, Gross GJ, Hui CC, Backx PH, Bruneau BG (2005) The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123:347–358. doi:10.1016/j.cell.2005.08.004

    Article  PubMed  CAS  Google Scholar 

  11. Date MO, Morita T, Yamashita N, Nishida K, Yamaguchi O, Higuchi Y, Hirotani S, Matsumura Y, Hori M, Tada M, Otsu K (2002) The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J Am Coll Cardiol 39:907–912. doi:10.1016/S0735-1097(01)01826-5

    Article  PubMed  CAS  Google Scholar 

  12. Dzhura I, Wu Y, Colbran RJ, Corbin JD, Balser JR, Anderson ME (2002) Cytoskeletal disrupting agents prevent calmodulin kinase, IQ domain and voltage-dependent facilitation of L-type Ca2+ channels. J Physiol 545:399–406. doi:10.1113/jphysiol.2002.021881

    Article  PubMed  CAS  Google Scholar 

  13. Eder P, Molkentin JD (2011) TRPC channels as effectors of cardiac hypertrophy. Circ Res 108:265–272. doi:10.1161/CIRCRESAHA.110.225888

    Article  PubMed  CAS  Google Scholar 

  14. Erickson JR, He BJ, Grumbach IM, Anderson ME (2011) CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 91:889–915. doi:10.1152/physrev.00018.2010

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez-Velasco M, Goren N, Benito G, Blanco-Rivero J, Bosca L, Delgado C (2003) Regional distribution of hyperpolarization-activated current If and hyperpolarization-activated cyclic nucleotide-gated channel mRNA expression in ventricular cells from control and hypertrophied rat hearts. J Physiol 553:395–405. doi:10.1113/jphysiol.2003.041954

    Article  PubMed  CAS  Google Scholar 

  16. Findlay I (2004) Physiological modulation of inactivation in L-type Ca2+ channels: one switch. J Physiol 554:275–283. doi:10.1113/jphysiol.2003.047902

    Article  PubMed  CAS  Google Scholar 

  17. Furukawa T, Kurokawa J (2006) Potassium channel remodeling in cardiac hypertrophy. J Mol Cell Cardiol 41:753–761. doi:10.1016/j.yjmcc.2006.07.021

    Article  PubMed  CAS  Google Scholar 

  18. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508. doi:10.1172/JCI24408

    PubMed  CAS  Google Scholar 

  19. Goltz D, Schultz JH, Stucke C, Wagner M, Bassalay P, Schwoerer AP, Ehmke H, Volk T (2007) Diminished Kv4.2/3 but not KChIP2 levels reduce the cardiac transient outward K+ current in spontaneously hypertensive rats. Cardiovasc Res 74:85–95. doi:10.1016/j.cardiores.2007.01.001

    Article  PubMed  CAS  Google Scholar 

  20. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100. doi:10.1007/BF00656997

    Article  PubMed  CAS  Google Scholar 

  21. Henderson BC, Tyagi N, Ovechkin A, Kartha GK, Moshal KS, Tyagi SC (2007) Oxidative remodeling in pressure overload induced chronic heart failure. Eur J Heart Fail 9:450–457. doi:10.1016/j.ejheart.2006.12.008

    Google Scholar 

  22. Hill JA (2003) Electrical remodeling in cardiac hypertrophy. Trends Cardiovasc Med 13:316–322. doi:10.1016/j.tcm.2003.08.002

    Article  PubMed  CAS  Google Scholar 

  23. Hill MF, Singal PK (1996) Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148:291–300

    PubMed  CAS  Google Scholar 

  24. Hool LC, Corry B (2007) Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxid Redox Signal 9:409–435. doi:10.1089/ars.2006.1446

    Article  PubMed  CAS  Google Scholar 

  25. Houser SR, Molkentin JD (2008) Does contractile Ca2+ control calcineurin-NFAT signaling and pathological hypertrophy in cardiac myocytes? Sci Signal 1:e31. doi:10.1126/scisignal.125pe31

    Article  Google Scholar 

  26. Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshita A (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363. doi:10.1161/01.RES.85.4.357

    Article  PubMed  CAS  Google Scholar 

  27. Isenberg G, Klöckner U (1982) Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflugers Arch 395:6–18. doi:10.1007/BF00584963

    Article  PubMed  CAS  Google Scholar 

  28. Javadov S, Rajapurohitam V, Kilic A, Hunter JC, Zeidan A, Said FN, Escobales N, Karmazyn M (2011) Expression of mitochondrial fusion-fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol 106:99–109. doi:10.1007/s00395-010-0122-3

    Article  PubMed  CAS  Google Scholar 

  29. Kääb S, Dixon J, Duc J, Ashen D, Näbauer M, Beuckelmann DJ, Steinbeck G, McKinnon D, Tomaselli GF (1998) Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98:1383–1393. doi:10.1161/01.CIR.98.14.1383

    Article  PubMed  Google Scholar 

  30. Kahan T, Bergfeldt L (2005) Left ventricular hypertrophy in hypertension: its arrhythmogenic potential. Heart 91:250–256. doi:10.1136/hrt.2004.042473

    Article  PubMed  Google Scholar 

  31. Keung EC (1989) Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res 64:753–763. doi:10.1161/01.RES.64.4.753

    Article  PubMed  CAS  Google Scholar 

  32. Kirchhof P, Fabritz L, Kilic A, Begrow F, Breithardt G, Kuhn M (2004) Ventricular arrhythmias, increased cardiac calmodulin kinase II expression, and altered repolarization kinetics in ANP receptor deficient mice. J Mol Cell Cardiol 36:691–700. doi:10.1016/j.yjmcc.2004.03.007

    Article  PubMed  CAS  Google Scholar 

  33. Lapenna D, Mezzetti A, de GS, Consoli A, Festi D, Di IC, Cuccurullo F (1994) Transmural distribution of antioxidant defences and lipid peroxidation in the rabbit left ventricular myocardium. Pflugers Arch 427:432–436. doi:10.1007/BF00374257

  34. Laskowski A, Woodman OL, Cao AH, Drummond GR, Marshall T, Kaye DM, Ritchie RH (2006) Antioxidant actions contribute to the antihypertrophic effects of atrial natriuretic peptide in neonatal rat cardiomyocytes. Cardiovasc Res 72:112–123. doi:10.1016/j.cardiores.2006.07.006

    Article  PubMed  CAS  Google Scholar 

  35. Lebeche D, Kaprielian R, del Monte F, Tomaselli GF, Gwathmey JK, Schwartz A, Hajjar RJ (2004) In vivo cardiac gene transfer of Kv4.3 abrogates the hypertrophic response in rats after aortic stenosis. Circulation 110:3435–3443. doi:10.1161/01.CIR.0000148176.33730.3F

    Article  PubMed  CAS  Google Scholar 

  36. Maejima Y, Kuroda J, Matsushima S, Ago T, Sadoshima J (2011) Regulation of myocardial growth and death by NADPH oxidase. J Mol Cell Cardiol 50:408–416. doi:10.1016/j.yjmcc.2010.12.018

    Article  PubMed  CAS  Google Scholar 

  37. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A (1998) Elevated levels of 8-iso-prostaglandin F in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97:1536–1539. doi:10.1161/01.CIR.97.16.1536

    Article  PubMed  CAS  Google Scholar 

  38. Marian AJ, Senthil V, Chen SN, Lombardi R (2006) Antifibrotic effects of antioxidant N-acetylcysteine in a mouse model of human hypertrophic cardiomyopathy mutation. J Am Coll Cardiol 47:827–834. doi:10.1016/j.jacc.2005.10.041

    Article  PubMed  CAS  Google Scholar 

  39. McCrossan ZA, Billeter R, White E (2004) Transmural changes in size, contractile and electrical properties of SHR left ventricular myocytes during compensated hypertrophy. Cardiovasc Res 63:283–292. doi:10.1016/j.cardiores.2004.04.013

    Article  PubMed  CAS  Google Scholar 

  40. Mozaffari MS, Baban B, Liu JY, Abebe W, Sullivan JC, El-Marakby A (2011) Mitochondrial complex I and NAD(P)H oxidase are major sources of exacerbated oxidative stress in pressure-overloaded ischemic-reperfused hearts. Basic Res Cardiol 106:287–297. doi:10.1007/s00395-011-0150-7

  41. Murdoch CE, om-Ruiz SP, Wang M, Zhang M, Walker S, Yu B, Brewer A, Shah AM (2011) Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol 106:527–538. doi:10.1007/s00395-011-0150-7

    Google Scholar 

  42. Nakagami H, Takemoto M, Liao JK (2003) NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35:851–859. doi:10.1016/S0022-2828(03)00145-7

    Article  PubMed  CAS  Google Scholar 

  43. Perrier E, Kerfant BG, Lalevee N, Bideaux P, Rossier MF, Richard S, Gomez AM, Benitah JP (2004) Mineralocorticoid receptor antagonism prevents the electrical remodeling that precedes cellular hypertrophy after myocardial infarction. Circulation 110:776–783. doi:10.1161/01.CIR.0000138973.55605.38

    Article  PubMed  CAS  Google Scholar 

  44. Perrier E, Perrier R, Richard S, Benitah JP (2004) Ca2+ controls functional expression of the cardiac K+ transient outward current via the calcineurin pathway. J Biol Chem 279:40634–40639. doi:10.1074/jbc.M407470200

    Article  PubMed  CAS  Google Scholar 

  45. Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, Baliga R, Wang J, Siwik DA, Singh K, Pagano P, Colucci WS, Sawyer DB (2001) Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89:453–460. doi:10.1161/hh1701.096615

    Article  PubMed  CAS  Google Scholar 

  46. Rossow CF, Dilly KW, Santana LF (2006) Differential calcineurin/NFATc3 activity contributes to the Ito transmural gradient in the mouse heart. Circ Res 98:1306–1313. doi:10.1161/01.RES.0000222028.92993.10

    Article  PubMed  CAS  Google Scholar 

  47. Rozanski GJ, Xu Z (2002) Glutathione and K+ channel remodeling in postinfarction rat heart. Am J Physiol Heart Circ Physiol 282:H2346–H2355. doi:10.1152/ajpheart.00894.2001

    PubMed  CAS  Google Scholar 

  48. Sah R, Ramirez RJ, Kaprielian R, Backx PH (2001) Alterations in action potential profile enhance excitation–contraction coupling in rat cardiac myocytes. J Physiol 533:201–214

    Article  PubMed  CAS  Google Scholar 

  49. Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH (2003) Regulation of cardiac excitation–contraction coupling by action potential repolarization: role of the transient outward potassium current (Ito). J Physiol 546:5–18. doi:10.1113/jphysiol.2002.026468

    Article  PubMed  CAS  Google Scholar 

  50. Scamps F, Mayoux E, Charlemagne D, Vassort G (1990) Calcium current in single cells isolated from normal and hypertrophied rat heart. Effects of α-adrenergic stimulation. Circ Res 67:199–208. doi:10.1161/01.RES.67.1.199

    Article  PubMed  CAS  Google Scholar 

  51. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907. doi:10.1136/hrt.2005.068270

    Article  PubMed  CAS  Google Scholar 

  52. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105:1023–1030. doi:10.1161/CIRCRESAHA.109.206581

    Article  PubMed  CAS  Google Scholar 

  53. Sirker A, Zhang M, Shah AM (2011) NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 106:735–747. doi:10.1007/s00395-011-0190-z

    Article  PubMed  CAS  Google Scholar 

  54. Skryabin BV, Holtwick R, Fabritz L, Kruse MN, Veltrup I, Stypmann J, Kirchhof P, Sabrane K, Bubikat A, Voss M, Kuhn M (2004) Hypervolemic hypertension in mice with systemic inactivation of the (floxed) guanylyl cyclase-A gene by αMHC-Cre-mediated recombination. Genesis 39:288–298. doi:10.1002/gene.20056

    Article  PubMed  CAS  Google Scholar 

  55. Song YH, Cho H, Ryu SY, Yoon JY, Park SH, Noh CI, Lee SH, Ho WK (2010) L-type Ca2+ channel facilitation mediated by H2O2-induced activation of CaMKII in rat ventricular myocytes. J Mol Cell Cardiol 48:773–780. doi:10.1016/j.yjmcc.2009.10.020

    Article  PubMed  CAS  Google Scholar 

  56. Sun M, Chen M, Dawood F, Zurawska U, Li JY, Parker T, Kassiri Z, Kirshenbaum LA, Arnold M, Khokha R, Liu PP (2007) Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 115:1398–1407. doi:10.1161/CIRCULATIONAHA.106.643585

    Article  PubMed  CAS  Google Scholar 

  57. Thorneloe KS, Liu XF, Walsh MP, Shimoni Y (2001) Transmural differences in rat ventricular protein kinase C epsilon correlate with its functional regulation of a transient cardiac K+ current. J Physiol 533:145–154. doi:10.1111/j.1469-7793.2001.0145b.x

    Article  PubMed  CAS  Google Scholar 

  58. Toischer K, Rokita AG, Unsold B, Zhu W, Kararigas G, Sossalla S, Reuter SP, Becker A, Teucher N, Seidler T, Grebe C, Preuss L, Gupta SN, Schmidt K, Lehnart SE, Kruger M, Linke WA, Backs J, Regitz-Zagrosek V, Schafer K, Field LJ, Maier LS, Hasenfuss G (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122:993–1003. doi:10.1161/CIRCULATIONAHA.110.943431

    Article  PubMed  Google Scholar 

  59. Tsai CT, Wang DL, Chen WP, Hwang JJ, Hsieh CS, Hsu KL, Tseng CD, Lai LP, Tseng YZ, Chiang FT, Lin JL (2007) Angiotensin II increases expression of α1C subunit of L-type calcium channel through a reactive oxygen species and cAMP response element-binding protein-dependent pathway in HL-1 myocytes. Circ Res 100:1476–1485. doi:10.1161/01.RES.0000268497.93085.e1

    Article  PubMed  CAS  Google Scholar 

  60. Vakili BA, Okin PM, Devereux RB (2001) Prognostic implications of left ventricular hypertrophy. Am Heart J 141:334–341. doi:10.1067/mhj.2001.113218

    Article  PubMed  CAS  Google Scholar 

  61. Viola HM, Arthur PG, Hool LC (2007) Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes. Circ Res 100:1036–1044. doi:10.1161/01.RES.0000263010.19273.48

    Article  PubMed  CAS  Google Scholar 

  62. Volk T, Ehmke H (2002) Conservation of L-type Ca2+ current characteristics in endo- and epicardial myocytes from rat left ventricle with pressure-induced hypertrophy. Pflugers Arch 443:399–404. doi:10.1007/s004240100712

    Article  PubMed  CAS  Google Scholar 

  63. Volk T, Nguyen THD, Schultz JH, Faulhaber J, Ehmke H (2001) Regional alterations of repolarizing K+ currents among the left ventricular wall of rats with ascending aortic stenosis. J Physiol 530:443–455. doi:10.1111/j.1469-7793.2001.0443k.x

    Article  PubMed  CAS  Google Scholar 

  64. Volk T, Noble PJ, Wagner M, Noble D, Ehmke H (2005) Ascending aortic stenosis selectively increases action potential-induced Ca2+ influx in epicardial myocytes of the rat left ventricle. Exp Physiol 90:111–121. doi:10.1113/expphysiol.2004.028712

    Article  PubMed  Google Scholar 

  65. Wagner M, Rudakova E, Schutz V, Frank M, Ehmke H, Volk T (2010) Larger transient outward K+ current and shorter action potential duration in Gα11 mutant mice. Pflugers Arch 459:607–618. doi:10.1007/s00424-009-0762-z

    Article  PubMed  CAS  Google Scholar 

  66. Wagner M, Moritz A, Volk T (2011) Interaction of gonadal steroids and the glucocorticoid corticosterone in the regulation of the L-type Ca2+ current in rat left ventricular cardiomyocytes. Acta Physiol (Oxf) 202:629–640. doi:10.1111/j.1748-1716.2011.02303.x

    Article  CAS  Google Scholar 

  67. Wang Y, Tandan S, Cheng J, Yang C, Nguyen L, Sugianto J, Johnstone JL, Sun Y, Hill JA (2008) Ca2+/calmodulin-dependent protein kinase II-dependent remodeling of Ca2+ current in pressure overload heart failure. J Biol Chem 283:25524–25532. doi:10.1074/jbc.M803043200

    Google Scholar 

  68. Wickenden AD, Kaprielian R, Kassiri Z, Tsoporis JN, Tsushima R, Fishman GI, Backx PH (1998) The role of action potential prolongation and altered intracellular calcium handling in the pathogenesis of heart failure. Cardiovasc Res 37:312–323. doi:10.1016/S0008-6363(97)00256-3

    Article  PubMed  CAS  Google Scholar 

  69. Xu L, Li XY, Liu Y, Li HT, Chen J, Li XY, Jiang XJ, Wu G, Tang YH, Wang X, Huang CX (2011) The mechanisms underlying ICa heterogeneity across murine left ventricle. Mol Cell Biochem 352:239–246. doi:10.1007/s11010-011-0759-8

    Article  PubMed  CAS  Google Scholar 

  70. Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20. doi:10.1016/j.yjmcc.2010.12.018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the expert technical assistance of Céline Grüninger. This work was supported by the Johannes und Frieda Marohn-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Wagner or Tilmann Volk.

Additional information

W. U. Foltz and M. Wagner contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foltz, W.U., Wagner, M., Rudakova, E. et al. N-acetylcysteine prevents electrical remodeling and attenuates cellular hypertrophy in epicardial myocytes of rats with ascending aortic stenosis. Basic Res Cardiol 107, 290 (2012). https://doi.org/10.1007/s00395-012-0290-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0290-4

Keywords

Navigation