Skip to main content

Advertisement

Log in

Constitutive phosphorylation of inhibitor-1 at Ser67 and Thr75 depresses calcium cycling in cardiomyocytes and leads to remodeling upon aging

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The activity of protein phosphatase-1 (PP1) inhibitor-1 (I-1) is antithetically modulated by the cAMP-protein kinase A (PKA) and Ca2+-protein kinase C (PKC) signaling axes. β-adrenergic (β-AR) stimulation results in PKA-phosphorylation of I-1 at threonine 35 (Thr35) and depressed PP1 activity, while PKC phosphorylation at serine 67 (Ser67) and/or Thr75 increases PP1 activity. In heart failure, pThr35 is decreased while pSer67 and pThr75 are elevated. However, the role of Ser67/Thr75 phosphorylation in vivo and its effects on Ca2+-cycling are not known. Thus, our aim was to investigate the functional significance of Ser67 and Thr75 phosphorylation in intact hearts. We generated transgenic mice (TG) with cardiac-specific overexpression of constitutively phosphorylated I-1 at Ser67 and Thr75 (S67D/T75D) and evaluated cardiac function. The S67D/T75D cardiomyocytes exhibited significantly depressed Ca2+-kinetics and contractile parameters, compared with wild-type (WT) cells. The decreased Ca2+-cycling was associated with a 27 % increase in PP1 activity, no alterations in PP2 activity and impaired phosphorylation of myosin-binding protein-C (MyBPC). Upon aging, there was cardiac remodeling associated with increases in systolic and diastolic left ventricular internal diameter dimensions (at 16 months), compared with WTs. The results indicate that phosphorylation of I-1 at Ser67 and Thr75 is associated with increased PP1 activity and depressed cardiomyocyte Ca2+-cycling, which manifests in geometrical alterations over the long term. Thus, hyperphosphorylation of these sites in failing hearts may contribute to deteriorative remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aitken A, Bilham T, Cohen P (1982) Complete primary structure of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur J Biochem 126:235–246. doi:10.1111/j.1432-1033.1982.tb06771.x

    Article  PubMed  CAS  Google Scholar 

  2. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100:1512–1521. doi:10.1161/01.RES.0000267723.65696.4a

    Article  PubMed  CAS  Google Scholar 

  3. Anjak A, Koch SE, Jiang MV, Jones WK, Rubinstein J (2011) Age and gender related changes in myocardial function in wild type FVB/N mice evaluated by advanced echocardiography. JASE 24:B7

    Google Scholar 

  4. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. doi:10.1038/415198a

    Article  PubMed  CAS  Google Scholar 

  5. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261. doi:10.1093/cvr/cvp033

    Article  PubMed  CAS  Google Scholar 

  6. Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, Mintze K, Pickard T, Roden R, Bristow MR, Sabbah HN, Mizrahi JL, Gromo G, King GL, Vlahos CJ (1999) Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation 99:384–391. doi:10.1161/01.CIR.99.3.384

    Article  PubMed  CAS  Google Scholar 

  7. Boyle AJ, Shih H, Hwang J, Ye J, Lee B, Zhang Y, Kwon D, Jun K, Zheng D, Sievers R, Angeli F, Yeghiazarians Y, Lee R (2011) Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp Gerontol 46:549–559. doi:10.1016/j.exger.2011.02.010

    Article  PubMed  Google Scholar 

  8. Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, Kimball TF, Lorenz JN, Nairn AC, Liggett SB, Bodi I, Wang S, Schwartz A, Lakatta EG, DePaoli-Roach AA, Robbins J, Hewett TE, Bibb JA, Westfall MV, Kranias EG, Molkentin JD (2004) PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 10:248–254. doi:10.1038/nm1000

    Article  PubMed  CAS  Google Scholar 

  9. Carr AN, Schmidt AG, Suzuki Y, del Monte F, Sato Y, Lanner C, Breeden K, Jing SL, Allen PB, Greengard P, Yatani A, Hoit BD, Grupp IL, Hajjar RJ, DePaoli-Roach AA, Kranias EG (2002) Type 1 phosphatase, a negative regulator of cardiac function. Mol Cell Biol 22:4124–4135. doi:10.1128/MCB.22.12.4124-4135.2002

    Article  PubMed  CAS  Google Scholar 

  10. Chen G, Zhou X, Florea S, Qian J, Cai W, Zhang Z, Fan GC, Lorenz J, Hajjar RJ, Kranias EG (2010) Expression of active protein phosphatase 1 inhibitor-1 attenuates chronic beta-agonist-induced cardiac apoptosis. Basic Res Cardiol 105:573–581. doi:10.1007/s00395-010-0106-3

    Article  PubMed  CAS  Google Scholar 

  11. El-Armouche A, Pamminger T, Ditz D, Zolk O, Eschenhagen T (2004) Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts. Cardiovasc Res 61:87–93. doi:10.1016/j.cardiores.2003.11.005

    Article  PubMed  CAS  Google Scholar 

  12. El-Armouche A, Rau T, Zolk O, Ditz D, Pamminger T, Zimmermann WH, Jackel E, Harding SE, Boknik P, Neumann J, Eschenhagen T (2003) Evidence for protein phosphatase inhibitor-1 playing an amplifier role in beta-adrenergic signaling in cardiac myocytes. FASEB J 17:437–439. doi:10.1096/fj.02-0057fje

    PubMed  CAS  Google Scholar 

  13. El-Armouche A, Wittkopper K, Fuller W, Howie J, Shattock MJ, Pavlovic D (2011) Phospholemman-dependent regulation of the cardiac Na/K-ATPase activity is modulated by inhibitor-1 sensitive type-1 phosphatase. FASEB J 25:4467–4475. doi:10.1096/fj.11-184903

    Article  PubMed  CAS  Google Scholar 

  14. Endo S, Zhou X, Connor J, Wang B, Shenolikar S (1996) Multiple structural elements define the specificity of recombinant human inhibitor-1 as a protein phosphatase-1 inhibitor. Biochemistry 35:5220–5228. doi:10.1021/bi952940f

    Article  PubMed  CAS  Google Scholar 

  15. Fan WJ, van Vuuren D, Genade S, Lochner A (2010) Kinases and phosphatases in ischaemic preconditioning: a re-evaluation. Basic Res Cardiol 105:495–511. doi:10.1007/s00395-010-0086-3

    Article  PubMed  CAS  Google Scholar 

  16. Gupta RC, Neumann J, Watanabe AM, Lesch M, Sabbah HN (1996) Evidence for presence and hormonal regulation of protein phosphatase inhibitor-1 in ventricular cardiomyocyte. Am J Physiol 270:H1159–H1164

    PubMed  CAS  Google Scholar 

  17. Haworth RS, Cuello F, Avkiran M (2011) Regulation by phosphodiesterase isoforms of protein kinase A-mediated attenuation of myocardial protein kinase D activation. Basic Res Cardiol 106:51–63. doi:10.1007/s00395-010-0116-1

    Article  PubMed  CAS  Google Scholar 

  18. Herzig S, Neumann J (2000) Effects of serine/threonine protein phosphatases on ion channels in excitable membranes. Physiol Rev 80:173–210

    PubMed  CAS  Google Scholar 

  19. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  20. Hua Y, Zhang Y, Ceylan-Isik AF, Wold LE, Nunn JM, Ren J (2011) Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy. Basic Res Cardiol 106:1173–1191. doi:10.1007/s00395-011-0222-8

    Article  PubMed  CAS  Google Scholar 

  21. Kirchhefer U, Baba HA, Boknik P, Breeden KM, Mavila N, Bruchert N, Justus I, Matus M, Schmitz W, Depaoli-Roach AA, Neumann J (2005) Enhanced cardiac function in mice overexpressing protein phosphatase Inhibitor-2. Cardiovasc Res 68:98–108. doi:10.1016/j.cardiores.2005.05.019

    Article  PubMed  CAS  Google Scholar 

  22. Knapp J, Aleth S, Balzer F, Gergs U, Schmitz W, Neumann J (2006) Comparison of contractile responses in isolated mouse aorta and pulmonary artery: influence of strain and sex. J Cardiovasc Pharmacol 48:820–826. doi:10.1097/01.fjc.0000232062.80084.4f

    Article  PubMed  CAS  Google Scholar 

  23. Koch SE, Gao X, Haar L, Jiang M, Lasko VM, Robbins N, Cai W, Brokamp C, Varma P, Tranter M, Liu Y, Ren X, Lorenz JN, Wang HS, Jones WK, Rubinstein J (2012) Probenecid: a novel use as a non-injurious positive inotrope through cardiac TRPV2 stimulation. J Mol Cell Cardiol 53:134–144. doi:10.1016/j.yjmcc.2012.04.011

    Google Scholar 

  24. Kooij V, Boontje N, Zaremba R, Jaquet K, dos Remedios C, Stienen GJ, van der Velden J (2010) Protein kinase C alpha and epsilon phosphorylation of troponin and myosin binding protein C reduce Ca2+ sensitivity in human myocardium. Basic Res Cardiol 105:289–300. doi:10.1007/s00395-009-0053-z

    Article  PubMed  CAS  Google Scholar 

  25. Linck B, Boknik P, Knapp J, Muller FU, Neumann J, Schmitz W, Vahlensieck U (1996) Effects of cantharidin on force of contraction and phosphatase activity in nonfailing and failing human hearts. Br J Pharmacol 119:545–550

    Article  PubMed  CAS  Google Scholar 

  26. Nairn AC, Svenningsson P, Nishi A, Fisone G, Girault JA, Greengard P (2004) The role of DARPP-32 in the actions of drugs of abuse. Neuropharmacology 47(Suppl 1):14–23. doi:10.1016/j.neuropharm.2004.05.010

    Article  PubMed  CAS  Google Scholar 

  27. Neumann J (2002) Altered phosphatase activity in heart failure, influence on Ca2+ movement. Basic Res Cardiol 97(Suppl 1):I91–I95

    PubMed  Google Scholar 

  28. Neumann J, Boknik P, Herzig S, Schmitz W, Scholz H, Gupta RC, Watanabe AM (1993) Evidence for physiological functions of protein phosphatases in the heart: evaluation with okadaic acid. Am J Physiol 265:H257–H266

    PubMed  CAS  Google Scholar 

  29. Nicolaou P, Hajjar RJ, Kranias EG (2009) Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology. J Mol Cell Cardiol 47:365–371. doi:10.1016/j.yjmcc.2009.05.010

    Article  PubMed  CAS  Google Scholar 

  30. Nicolaou P, Kranias EG (2009) Role of PP1 in the regulation of Ca cycling in cardiac physiology and pathophysiology. Front Biosci 14:3571–3585. doi:10.2741/3472

    Article  PubMed  CAS  Google Scholar 

  31. Nicolaou P, Rodriguez P, Ren X, Zhou X, Qian J, Sadayappan S, Mitton B, Pathak A, Robbins J, Hajjar RJ, Jones K, Kranias EG (2009) Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury. Circ Res 104:1012–1020. doi:10.1161/CIRCRESAHA.108.189811

    Article  PubMed  CAS  Google Scholar 

  32. O’Connell TD, Rodrigo MC, Simpson PC (2007) Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 357:271–296. doi:10.1385/1-59745-214-9:271

    PubMed  Google Scholar 

  33. Pathak A, del Monte F, Zhao W, Schultz JE, Lorenz JN, Bodi I, Weiser D, Hahn H, Carr AN, Syed F, Mavila N, Jha L, Qian J, Marreez Y, Chen G, McGraw DW, Heist EK, Guerrero JL, DePaoli-Roach AA, Hajjar RJ, Kranias EG (2005) Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res 96:756–766. doi:10.1161/01.RES.0000161256.85833.fa

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez P, Mitton B, Nicolaou P, Chen G, Kranias EG (2007) Phosphorylation of human inhibitor-1 at Ser67 and/or Thr75 attenuates stimulatory effects of protein kinase A signaling in cardiac myocytes. Am J Physiol Heart Circ Physiol 293:H762–H769. doi:10.1152/ajpheart.00104.2007

    Article  PubMed  CAS  Google Scholar 

  35. Rodriguez P, Mitton B, Waggoner JR, Kranias EG (2006) Identification of a novel phosphorylation site in protein phosphatase inhibitor-1 as a negative regulator of cardiac function. J Biol Chem 281:38599–38608. doi:10.1074/jbc.M604139200

    Article  PubMed  CAS  Google Scholar 

  36. Rubinstein J, Aloka F, Abela GS (2009) Statin therapy decreases myocardial function as evaluated via strain imaging. Clin Cardiol 32:684–689. doi:10.1002/clc.20644

    Article  PubMed  Google Scholar 

  37. Sachan N, Dey A, Rotter D, Grinsfelder DB, Battiprolu PK, Sikder D, Copeland V, Oh M, Bush E, Shelton JM, Bibb JA, Hill JA, Rothermel BA (2011) Sustained hemodynamic stress disrupts normal circadian rhythms in calcineurin-dependent signaling and protein phosphorylation in the heart. Circ Res 108:437–445. doi:10.1161/CIRCRESAHA.110.235309

    Article  PubMed  CAS  Google Scholar 

  38. Sadayappan S, Gulick J, Osinska H, Barefield D, Cuello F, Avkiran M, Lasko VM, Lorenz JN, Maillet M, Martin JL, Brown JH, Bers DM, Molkentin JD, James J, Robbins J (2011) A critical function for Ser-282 in cardiac Myosin binding protein-C phosphorylation and cardiac function. Circ Res 109:141–150. doi:10.1161/CIRCRESAHA.111.242560

    Article  PubMed  CAS  Google Scholar 

  39. Sadayappan S, Gulick J, Osinska H, Martin LA, Hahn HS, Dorn GW 2nd, Klevitsky R, Seidman CE, Seidman JG, Robbins J (2005) Cardiac myosin-binding protein-C phosphorylation and cardiac function. Circ Res 97:1156–1163. doi:10.1161/01.RES.0000190605.79013.4d

    Article  PubMed  CAS  Google Scholar 

  40. Sadayappan S, Osinska H, Klevitsky R, Lorenz JN, Sargent M, Molkentin JD, Seidman CE, Seidman JG, Robbins J (2006) Cardiac myosin binding protein C phosphorylation is cardioprotective. Proc Natl Acad Sci USA 103:16918–16923. doi:10.1073/pnas.0607069103

    Article  PubMed  CAS  Google Scholar 

  41. Song Q, Schmidt AG, Hahn HS, Carr AN, Frank B, Pater L, Gerst M, Young K, Hoit BD, McConnell BK, Haghighi K, Seidman CE, Seidman JG, Dorn GW 2nd, Kranias EG (2003) Rescue of cardiomyocyte dysfunction by phospholamban ablation does not prevent ventricular failure in genetic hypertrophy. J Clin Invest 111:859–867. doi:10.1172/JCI16738

    PubMed  CAS  Google Scholar 

  42. Tong CW, Stelzer JE, Greaser ML, Powers PA, Moss RL (2008) Acceleration of crossbridge kinetics by protein kinase A phosphorylation of cardiac myosin binding protein C modulates cardiac function. Circ Res 103:974–982. doi:10.1161/CIRCRESAHA.108.177683

    Article  PubMed  CAS  Google Scholar 

  43. Totzeck A, Boengler K, van de Sand A, Konietzka I, Gres P, Garcia-Dorado D, Heusch G, Schulz R (2008) No impact of protein phosphatases on connexin 43 phosphorylation in ischemic preconditioning. Am J Physiol Heart Circ Physiol 295:H2106–H2112. doi:10.1152/ajpheart.00456.2008

    Article  PubMed  CAS  Google Scholar 

  44. Wang J, Liu X, Sentex E, Takeda N, Dhalla NS (2003) Increased expression of protein kinase C isoforms in heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol 284:H2277–H2287. doi:10.1152/ajpheart.00142.200

    PubMed  CAS  Google Scholar 

  45. Wittkopper K, Dobrev D, Eschenhagen T, El-Armouche A (2011) Phosphatase-1 inhibitor-1 in physiological and pathological beta-adrenoceptor signalling. Cardiovasc Res 91:392–401. doi:10.1093/cvr/cvr058

    Article  PubMed  Google Scholar 

  46. Wittkopper K, Eschenhagen T, El-Armouche A (2010) Phosphatase-1-inhibitor-1: amplifier or attenuator of catecholaminergic stress? Basic Res Cardiol 105:569–571. doi:10.1007/s00395-010-0107-2

    Article  PubMed  Google Scholar 

  47. Wittkopper K, Fabritz L, Neef S, Ort KR, Grefe C, Unsold B, Kirchhof P, Maier LS, Hasenfuss G, Dobrev D, Eschenhagen T, El-Armouche A (2010) Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging. J Clin Invest 120:617–626. doi:10.1172/JCI40545

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Wen Zhao for advice on isolation of myocytes, Ms. Andrea Collins for help with the Western Blot technique and Ms. Valerie Lasko for technical expertise in performing mouse catheterization. This work was supported by National Institutes of Health Grants: HL064018 and HL26057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia G. Kranias.

Additional information

Kranias E.G. is a scientific founder of Nanocor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florea, S., Anjak, A., Cai, WF. et al. Constitutive phosphorylation of inhibitor-1 at Ser67 and Thr75 depresses calcium cycling in cardiomyocytes and leads to remodeling upon aging. Basic Res Cardiol 107, 279 (2012). https://doi.org/10.1007/s00395-012-0279-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0279-z

Keywords

Navigation