Skip to main content

Advertisement

Log in

NF-κB in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Findings from our laboratory indicate that proinflammatory cytokines and their transcription factor, nuclear factor-kappaB (NF-κB), are increased in the hypothalamic paraventricular nucleus (PVN) and contribute towards the progression of heart failure. In this study, we determined whether NF-κB activation within the PVN contributes to sympathoexcitation via interaction with neurotransmitters in the PVN during the pathogenesis of heart failure. Heart failure was induced in rats by left anterior descending coronary artery ligation. Sham-operated control (SHAM) or heart failure rats were treated for 4 weeks through bilateral PVN infusion with SN50, SN50M or vehicle via osmotic minipump. Rats with heart failure treated with PVN vehicle or SN50M (inactive peptide for SN50) had increased levels of glutamate, norepinephrine (NE), tyrosine hydroxylase (TH), superoxide, gp91phox (a subunit of NAD(P)H oxidase), phosphorylated IKKβ and NF-κB p65 activity, and lower levels of gamma-aminobutyric acid (GABA) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN compared with those of SHAM rats. Plasma levels of cytokines, norepinephrine, epinephrine and angiotensin II, and renal sympathetic nerve activity (RSNA) were increased in heart failure rats. Bilateral PVN infusion of SN50 prevented the decreases in PVN GABA and GAD67, and the increases in RSNA and PVN glutamate, norepinephrine, TH, superoxide, gp91phox, phosphorylated IKKβ and NF-κB p65 activity observed in vehicle or SN50M-treated heart failure rats. A same dose of SN50 given intraperitoneally did not affect neurotransmitters concentration in the PVN and was similar to vehicle-treated heart failure rats. These findings suggest that NF-κB activation in the PVN modulates neurotransmitters and contributes to sympathoexcitation in rats with ischemia-induced heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agarwal D, Haque M, Sriramula S, Mariappan N, Pariaut R, Francis J (2009) Role of proinflammatory cytokines and redox homeostasis in exercise-induced delayed progression of hypertension in spontaneously hypertensive rats. Hypertension 54:1393–1400. doi:10.1161/HYPERTENSIONAHA.109.135459

    Article  PubMed  CAS  Google Scholar 

  2. Aker S, Belosjorow S, Konietzka I, Duschin A, Martin C, Heusch G, Schulz R (2003) Serum but not myocardial TNF-alpha concentration is increased in pacing-induced heart failure in rabbits. Am J Physiol Regul Integr Comp Physiol 285:463–469. doi:10.1152/ajpregu.00153.2003

    Google Scholar 

  3. Barber M, Kasturi BS, Austin ME, Patel KP, MohanKumar SM, MohanKumar PS (2003) Diabetes-induced neuroendocrine changes in rats: role of brain monoamines, insulin and leptin. Brain Res 964:128–135. doi:10.1016/S0006-8993(02)04091-X

    Article  PubMed  CAS  Google Scholar 

  4. Bhakar AL, Tannis LL, Zeindler C, Russo MP, Jobin C, Park DS, MacPherson S, Barker PA (2002) Constitutive nuclear factor-kappa B activity is required for central neuron survival. J Neurosci 22:8466–8475. doi:0270-6474/02/228466-10

    PubMed  CAS  Google Scholar 

  5. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, Conzen P, Becker BF (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104:79–89. doi:10.1007/s00395-008-0749-5

    Article  Google Scholar 

  6. Chorianopoulos E, Heger T, Lutz M, Frank D, Bea F, Katus HA, Frey N (2010) FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol 105:301–313. doi:10.1007/s00395-009-0046-y

    Article  PubMed  CAS  Google Scholar 

  7. Cowling RT, Gurantz D, Peng J, Dillmann WH, Greenberg BH (2002) Transcription factor NF-kappa B is necessary for up-regulation of type 1 angiotensin II receptor mRNA in rat cardiac fibroblasts treated with tumor necrosis factor-alpha or interleukin-1 beta. J Biol Chem 277:5719–5724. doi:10.1074/jbc.M107515200

    Article  PubMed  CAS  Google Scholar 

  8. Dunn AJ (2000) Cytokine activation of the HPA axis. Ann N Y Acad Sci 917:608–617. doi:10.1111/j.1749-6632.2000.tb05426.x

    Article  PubMed  CAS  Google Scholar 

  9. Elks CM, Mariappan N, Haque M, Guggilam A, Majid DS, Francis J (2009) Chronic NF-κB blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in SHR. Am J Physiol Renal Physiol 296:298–305. doi:10.1152/ajprenal.90628.2008

    Article  Google Scholar 

  10. Ferrari R (1998) Tumor necrosis factor in CHF: a double facet cytokine. Cardiovasc Res 37:554–559. doi:10.1016/S0008-6363(97)00309-X

    Article  PubMed  CAS  Google Scholar 

  11. Francis J, Chu Y, Johnson AK, Weiss RM, Felder RB (2004) Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol Heart Circ Physiol 286:H2264–H2271. doi:10.1152/ajpheart.01072.2003

    Article  PubMed  CAS  Google Scholar 

  12. Francis J, MohanKumar SM, MohanKumar PS (2000) Correlations of norepinephrine release in the paraventricular nucleus with plasma corticosterone and leptin after systemic lipopolysaccharide: blockade by soluble IL-1 receptor. Brain Res 867:180–187. doi:10.1016/S0006-8993(00)02311-8

    Article  PubMed  CAS  Google Scholar 

  13. Francis J, Weiss RM, Johnson AK, Felder RB (2003) Central mineralocorticoid receptor blockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am J Physiol Regul Integr Comp Physiol 284:R328–R335. doi:10.1152/ajpregu.00376.2002

    PubMed  CAS  Google Scholar 

  14. Francis J, Zhang ZH, Weiss RM, Felder RB (2004) Neural regulation of the proinflammatory cytokine response to acute myocardial infarction. Am J Physiol Heart Circ Physiol 287:H791–H797. doi:10.1152/ajpheart.00099.2004

    Google Scholar 

  15. Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, Zucker IH (2005) Sympathoexcitation by central ANG II: roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. Am J Physiol Heart Circ Physiol 288:H2271–H2279. doi:10.1152/ajpheart.00949.2004

    Article  PubMed  CAS  Google Scholar 

  16. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505. doi:10.1016/j.bcp2006.04.011

    Article  PubMed  CAS  Google Scholar 

  17. Guggilam A, Cardinale JP, Mariappan N, Sriramula S, Haque M, Francis J (2011) Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide. Basic Res Cardiol 106:273–286. doi:10.1007/s00395-010-0146-8

    Article  PubMed  CAS  Google Scholar 

  18. Guggilam A, Haque M, Kerut EK, McIlwain E, Lucchesi P, Seghal I, Francis J (2007) TNF-alpha blockade decreases oxidative stress in the paraventricular nucleus and attenuates sympathoexcitation in heart failure rats. Am J Physiol Heart Circ Physiol 293:H599–H609. doi:10.1152/ajpheart.00286.2007

    Article  PubMed  CAS  Google Scholar 

  19. Guggilam A, Patel KP, Haque M, Ebenezer PJ, Kapusta DR, Francis J (2008) Cytokine blockade attenuates sympathoexcitation in heart failure: cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. Eur J Heart Fail 10:625–634. doi:10.1016/j.ejheart.2008.05.004

    Article  PubMed  CAS  Google Scholar 

  20. Kang YM, Zhang AQ, Zhao XF, Cardinale J, Elks C, Cao XM, Zhang ZW, Francis J (2011) Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Res Cardiol 106(3):473–483. doi:10.1007/s00395-011-0155-2

    Article  PubMed  CAS  Google Scholar 

  21. Kang YM, He RL, Yang LM, Qin DN, Guggilam A, Elks C, Yan N, Guo Z, Francis J (2009) Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res 83:737–746. doi:10.1093/cvr/cvp160

    Article  PubMed  CAS  Google Scholar 

  22. Kang YM, Ma Y, Elks C, Zheng JP, Yang ZM, Francis J (2008) Cross-talk between cytokines and renin-angiotensin in hypothalamic paraventricular nucleus in heart failure: role of nuclear factor-kappaB. Cardiovasc Res 79:671–678. doi:10.1093/cvr/cvn119

    Article  PubMed  CAS  Google Scholar 

  23. Kang YM, Ma Y, Zheng JP, Elks C, Sriramula S, Yang ZM, Francis J (2009) Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovasc Res 82:503–512. doi:10.1093/cvr/cvp073

    Article  PubMed  CAS  Google Scholar 

  24. Kang YM, Zhang ZH, Johnson RF, Yu Y, Beltz T, Johnson AK, Weiss RM, Felder RB (2006) Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circ Res 99:758–766. doi:10.1161/01.RES.0000244092.95152.86

    Article  PubMed  CAS  Google Scholar 

  25. Kang YM, Zhang ZH, Xue B, Weiss RM, Felder RB (2008) Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol 295:H227–H236. doi:10.1152/ajpheart.01157.2007

    Article  PubMed  CAS  Google Scholar 

  26. Kenney MJ, Weiss ML, Haywood JR (2003) The paraventricular nucleus: an important component of the central neurocircuitry regulating sympathetic nerveoutflow. Acta Physiol Scand 177(1):7–15. doi:10.1046/j.1365-201X.2003.01042.x

    Article  PubMed  CAS  Google Scholar 

  27. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  PubMed  CAS  Google Scholar 

  28. Li YF, Jackson KL, Stern JE, Rabeler B, Patel KP (2006) Interaction between glutamate and GABA systems in the integration of sympathetic outflow by the paraventricular nucleus of the hypothalamus. Am J Physiol Heart Circ Physiol 291:H2847–H2856. doi:10.1152/ajpheart.00625.2005

    Article  PubMed  CAS  Google Scholar 

  29. Lacerda L, McCarthy J, Mungly SF, Lynn EG, Sack MN, Opie LH, Lecour S (2010) TNFα protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 105:751–762. doi:10.1007/s00395-010-0113-4

    Article  PubMed  CAS  Google Scholar 

  30. Li S, Zhong S, Zeng K, Luo Y, Zhang F, Sun X, Chen L (2010) Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Res Cardiol 105:139–150. doi:10.1007/s00395-009-0067-6

    Article  PubMed  CAS  Google Scholar 

  31. Lupia E, Spatola T, Cuccurullo A, Bosco O, Mariano F, Pucci A, Ramella R, Alloatti G, Montrucchio G (2010) Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum. Basic Res Cardiol 105:609–620. doi:10.1007/s00395-010-0103-6

    Article  PubMed  Google Scholar 

  32. Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH (2000) Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: a role for angiotensin II. Circulation 102:1854–1862. doi:10.1161/01.CIR.102.15.1854

    PubMed  CAS  Google Scholar 

  33. MohanKumar SM, MohanKumar PS, Quadri SK (1998) Specificity of interleukin-1beta-induced changes in monoamine concentrations in hypothalamic nuclei: blockade by interleukin-1 receptor antagonist. Brain Res Bull 47:29–34. doi:10.1016/S0361-9230(98)00037-9

    Article  PubMed  CAS  Google Scholar 

  34. Nagura S, Sakagami T, Kakiichi A, Yoshimoto M, Miki K (2004) Acute shifts in baroreflex control of renal sympathetic nerve activity induced by REM sleep and grooming in rats. J Physiol 558:975–983. doi:10.1113/jphysiol.2004.064527

    Article  PubMed  CAS  Google Scholar 

  35. Nozaki N, Yamaguchi S, Shirakabe M, Nakamura H, Tomoike H (1997) Soluble tumor necrosis factor receptors are elevated in relation to severity of congestive heart failure. Jpn Circ J 61:657–664. doi:10.1253/jcj.61.657

    Article  PubMed  CAS  Google Scholar 

  36. Paxinos G, Watson CR, Emson PC (1987) The rat brain in stereotaxic coordinates, 2nd edn. Academic, San Diego

    Google Scholar 

  37. Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119:1355–1357. doi:10.1161/CIRCULATIONAHA.108.846105

    Article  PubMed  Google Scholar 

  38. Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-alpha in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146. doi:10.1161/01.RES.0000255031.15793.86

    Article  PubMed  CAS  Google Scholar 

  39. Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31:410–417

    Article  PubMed  CAS  Google Scholar 

  40. Thielmann M, Dörge H, Martin C, Belosjorow S, Schwanke U, van De Sand A, Konietzka I, Büchert A, Krüger A, Schulz R, Heusch G (2002) Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine. Circ Res 90:807–813. doi:10.1161/01.RES.0000014451.75415.36

    Article  PubMed  CAS  Google Scholar 

  41. Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38:307–314. doi:10.1016/s0735-1097(01)01377-8

    Article  PubMed  CAS  Google Scholar 

  42. Yang LM, Hu B, Xia YH, Zhang BL, Zhao H (2008) Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav Brain Res 188:84–90. doi:10.1016/j.bbr.2007.10.022

    Article  PubMed  Google Scholar 

  43. Zhang C, Wu J, Xu X, Potter BJ, Gao X (2010) Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury. Basic Res Cardiol 105:453–464. doi:10.1007/s00395-010-0083-6

    Article  PubMed  CAS  Google Scholar 

  44. Zhang ZH, Wei SG, Francis J, Felder RB (2003) Cardiovascular and renal sympathetic activation by blood-borne TNF-alpha in rat: the role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol 284:R916–R927. doi:10.1152/ajpregu.00406.2002

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 81070199, 81170248, 81025001), U.S. National Institutes of Health (NIH) Grant RO1-HL-080544, and National Basic Research Program of China (Nos. 2012CB517805, 2007CB512106).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ming Kang or Joseph Francis.

Additional information

Y.-M. Kang, F. Gao and H.-H. Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, YM., Gao, F., Li, HH. et al. NF-κB in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure. Basic Res Cardiol 106, 1087–1097 (2011). https://doi.org/10.1007/s00395-011-0215-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0215-7

Keywords

Navigation