Skip to main content

Advertisement

Log in

EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Urotensin II (UTII) and its seven trans-membrane receptor (UTR) are up-regulated in the heart under pathological conditions. Previous in vitro studies have shown that UTII trans-activates the epidermal growth factor receptor (EGFR), however, the role of such novel signalling pathway stimulated by UTII is currently unknown. In this study, we hypothesized that EGFR trans-activation by UTII might exert a protective effect in the overloaded heart. To test this hypothesis, we induced cardiac hypertrophy by transverse aortic constriction (TAC) in wild-type mice, and tested the effects of the UTII antagonist Urantide (UR) on cardiac function, structure, and EGFR trans-activation. After 7 days of pressure overload, UR treatment induced a rapid and significant impairment of cardiac function compared to vehicle. In UR-treated TAC mice, cardiac dysfunction was associated with reduced phosphorylation levels of the EGFR and extracellular-regulated kinase (ERK), increased apoptotic cell death and fibrosis. In vitro UTR stimulation induced membrane translocation of β-arrestin 1/2, EGFR phosphorylation/internalization, and ERK activation in HEK293 cells. Furthermore, UTII administration lowered apoptotic cell death induced by serum deprivation, as shown by reduced TUNEL/Annexin V staining and caspase 3 activation. Interestingly, UTII-mediated EGFR trans-activation could be prevented by UR treatment or knockdown of β-arrestin 1/2. Our data show, for the first time in vivo, a new UTR signalling pathway which is mediated by EGFR trans-activation, dependent by β-arrestin 1/2, promoting cell survival and cardioprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao Z, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNulty DE, Ellis CE, Elshourbagy NA, Shabon U, Trill JJ, Hay DW, Ohlstein EH, Bergsma DJ, Douglas SA (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401:282–286. doi:10.1038/45809

    Article  PubMed  CAS  Google Scholar 

  2. Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H, Asanuma H, Sanada S, Matsumura Y, Takeda H, Beppu S, Tada M, Hori M, Higashiyama S (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8:35–40. doi:10.1038/nm0102-35

    Article  PubMed  CAS  Google Scholar 

  3. Bousette N, Hu F, Ohlstein EH, Dhanak D, Douglas SA, Giaid A (2006) Urotensin-II blockade with SB-611812 attenuates cardiac dysfunction in a rat model of coronary artery ligation. J Mol Cell Cardiol 41:285–295. doi:10.1016/j.yjmcc.2006.05.008

    Article  PubMed  CAS  Google Scholar 

  4. Carneiro-Ramos MS, Diniz GP, Nadu AP, Almeida J, Vieira RL, Santos RA, Barreto-Chaves ML (2010) Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol 105:325–335. doi:10.1007/s00395-010-0089-0

    Article  PubMed  CAS  Google Scholar 

  5. Chartrel N, Leprince J, Dujardin C, Chatenet D, Tollemer H, Baroncini M, Balment RJ, Beauvillain JC, Vaudry H (2004) Biochemical characterization and immunohistochemical localization of urotensin II in the human brainstem and spinal cord. J Neurochem 91:110–118. doi:10.1111/j.1471-4159.2004.02698.x

    Article  PubMed  CAS  Google Scholar 

  6. Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL, Chen J, Kahn R, Condorelli G, Ross J Jr, Chien KR, Lee KF (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465. doi:10.1038/nm0502-459

    Article  PubMed  CAS  Google Scholar 

  7. Curcio A, Noma T, Naga Prasad SV, Wolf MJ, Lemaire A, Perrino C, Mao L, Rockman HA (2006) Competitive displacement of phosphoinositide 3-kinase from beta-adrenergic receptor kinase-1 improves postinfarction adverse myocardial remodeling. Am J Physiol Heart Circ Physiol 291:H1754–H1760. doi:10.1152/ajpheart.01199.2005

    Article  PubMed  CAS  Google Scholar 

  8. d’Uscio LV, Moreau P, Shaw S, Takase H, Barton M, Luscher TF (1997) Effects of chronic ETA-receptor blockade in angiotensin II-induced hypertension. Hypertension 29:435–441

    PubMed  Google Scholar 

  9. Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379:557–560. doi:10.1038/379557a0

    Article  PubMed  CAS  Google Scholar 

  10. Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 104:653–667. doi:10.1007/s00395-009-0043-1

    Article  PubMed  CAS  Google Scholar 

  11. Dun SL, Brailoiu GC, Yang J, Chang JK, Dun NJ (2001) Urotensin II-immunoreactivity in the brainstem and spinal cord of the rat. Neurosci Lett 305:9–12. doi:10.1016/S0304-3940(01)01804-3

    Article  PubMed  CAS  Google Scholar 

  12. Esposito G, Perrino C, Ozaki T, Takaoka H, Defer N, Petretta MP, De Angelis MC, Mao L, Hanoune J, Rockman HA, Chiariello M (2008) Increased myocardial contractility and enhanced exercise function in transgenic mice overexpressing either adenylyl cyclase 5 or 8. Basic Res Cardiol 103:22–30. doi:10.1007/s00395-007-0688-6

    Article  PubMed  Google Scholar 

  13. Esposito G, Perrino C, Schiattarella GG, Belardo L, di Pietro E, Franzone A, Capretti G, Gargiulo G, Pironti G, Cannavo A, Sannino A, Izzo R, Chiariello M (2010) Induction of mitogen-activated protein kinases is proportional to the amount of pressure overload. Hypertension 55:137–143. doi:10.1161/HYPERTENSIONAHA.109.135467

    Article  PubMed  CAS  Google Scholar 

  14. Esposito G, Prasad SV, Rapacciuolo A, Mao L, Koch WJ, Rockman HA (2001) Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation 103:1453–1458

    PubMed  CAS  Google Scholar 

  15. Fontes-Sousa AP, Bras-Silva C, Pires AL, Monteiro-Sousa D, Leite-Moreira AF (2007) Urotensin II acutely increases myocardial length and distensibility: potential implications for diastolic function and ventricular remodeling. Naunyn Schmiedebergs Arch Pharmacol 376:107–115. doi:10.1007/s00210-007-0180-8

    Article  PubMed  CAS  Google Scholar 

  16. Hammoud L, Lu X, Lei M, Feng Q (2011) Deficiency in TIMP-3 increases cardiac rupture and mortality post-myocardial infarction via EGFR signaling: beneficial effects of cetuximab. Basic Res Cardiol doi:10.1007/s00395-010-0147-7

  17. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW, Antman EM, Smith SC Jr, Adams CD, Anderson JL, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B (2005) ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 112:e154–e235. doi:10.1161/CIRCULATIONAHA.105.167586

    Article  PubMed  Google Scholar 

  18. Iaccarino G, Tomhave ED, Lefkowitz RJ, Koch WJ (1998) Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation 98:1783–1789

    PubMed  CAS  Google Scholar 

  19. Indolfi C, Di Lorenzo E, Perrino C, Stingone AM, Curcio A, Torella D, Cittadini A, Cardone L, Coppola C, Cavuto L, Arcucci O, Sacca L, Avvedimento EV, Chiariello M (2002) Hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation. Circulation 106:2118–2124. doi:10.1161/01.CIR.0000034047.70205.97

    Article  PubMed  CAS  Google Scholar 

  20. Khan SQ, Bhandari SS, Quinn P, Davies JE, Ng LL (2007) Urotensin II is raised in acute myocardial infarction and low levels predict risk of adverse clinical outcome in humans. Int J Cardiol 117:323–328. doi:10.1016/j.ijcard.2006.05.016

    Article  PubMed  Google Scholar 

  21. Kim IM, Tilley DG, Chen J, Salazar NC, Whalen EJ, Violin JD, Rockman HA (2008) Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci USA 105:14555–14560. doi:10.1073/pnas.0804745105

    Article  PubMed  CAS  Google Scholar 

  22. Klaiber M, Kruse M, Volker K, Schroter J, Feil R, Freichel M, Gerling A, Feil S, Dietrich A, Londono JE, Baba HA, Abramowitz J, Birnbaumer L, Penninger JM, Pongs O, Kuhn M (2010) Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2. Basic Res Cardiol 105:583–595. doi:10.1007/s00395-010-0098-z

    Article  PubMed  CAS  Google Scholar 

  23. Kompa AR, Wang BH, Phrommintikul A, Ho PY, Kelly DJ, Behm DJ, Douglas SA, Krum H (2010) Chronic urotensin II receptor antagonist treatment does not alter hypertrophy or fibrosis in a rat model of pressure-overload hypertrophy. Peptides 31:1523–1530. doi:10.1016/j.peptides.2010.04.026

    Article  PubMed  CAS  Google Scholar 

  24. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517. doi:10.1126/science.1109237

    Article  PubMed  CAS  Google Scholar 

  25. Leineweber K, Bohm M, Heusch G (2006) Cyclic adenosine monophosphate in acute myocardial infarction with heart failure: slayer or savior? Circulation 114:365–367. doi:10.1161/CIRCULATIONAHA.106.642132

    Article  PubMed  Google Scholar 

  26. Lim M, Honisett S, Sparkes CD, Komesaroff P, Kompa A, Krum H (2004) Differential effect of urotensin II on vascular tone in normal subjects and patients with chronic heart failure. Circulation 109:1212–1214. doi:10.1161/01.CIR.0000121326.69153.98

    Article  PubMed  CAS  Google Scholar 

  27. Liu JC, Chen CH, Chen JJ, Cheng TH (2009) Urotensin II induces rat cardiomyocyte hypertrophy via the transient oxidization of Src homology 2-containing tyrosine phosphatase and transactivation of epidermal growth factor receptor. Mol Pharmacol 76:1186–1195. doi:10.1124/mol.109.05829

    Article  PubMed  CAS  Google Scholar 

  28. Liu Y, Yang XM, Iliodromitis EK, Kremastinos DT, Dost T, Cohen MV, Downey JM (2008) Redox signaling at reperfusion is required for protection from ischemic preconditioning but not from a direct PKC activator. Basic Res Cardiol 103:54–59. doi:10.1007/s00395-007-0683-y

    Article  PubMed  CAS  Google Scholar 

  29. Matsushita M, Shichiri M, Imai T, Iwashina M, Tanaka H, Takasu N, Hirata Y (2001) Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues. J Hypertens 19:2185–2190. doi:10.1097/00004872-200112000-00011

    Article  PubMed  CAS  Google Scholar 

  30. Maudsley S, Pierce KL, Zamah AM, Miller WE, Ahn S, Daaka Y, Lefkowitz RJ, Luttrell LM (2000) The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J Biol Chem 275:9572–9580. doi:10.1074/jbc.275.13.9572

    Article  PubMed  CAS  Google Scholar 

  31. Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103. doi:10.1038/emboj.2008.233

    Article  PubMed  CAS  Google Scholar 

  32. Morris GE, Nelson CP, Standen NB, Challiss RA, Willets JM (2010) Endothelin signalling in arterial smooth muscle is tightly regulated by G protein-coupled receptor kinase 2. Cardiovasc Res 85:424–433. doi:10.1093/cvr/cvp310

    Article  PubMed  CAS  Google Scholar 

  33. Mozaffari MS, Baban B, Liu JY, Abebe W, Sullivan JC, El-Marakby (2011) A Mitochondrial complex I and NAD(P)H oxidase are major sources of exacerbated oxidative stress in pressure-overloaded ischemic-reperfused hearts. Basic Res Cardiol doi:10.1007/s00395-011-0150-7

  34. Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J, Le Corvoisier P, Violin JD, Wei H, Lefkowitz RJ, Rockman HA (2007) Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 117:2445–2458. doi:10.1172/JCI31901

    Article  PubMed  CAS  Google Scholar 

  35. Onan D, Pipolo L, Yang E, Hannan RD, Thomas WG (2004) Urotensin II promotes hypertrophy of cardiac myocytes via mitogen-activated protein kinases. Mol Endocrinol 18:2344–2354. doi:10.1210/me.2003-0309

    Article  PubMed  CAS  Google Scholar 

  36. Penna C, Tullio F, Perrelli MG, Moro F, Abbadessa G, Piccione F, Carriero V, Racca S, Pagliaro P (2010) Ischemia/reperfusion injury is increased and cardioprotection by a postconditioning protocol is lost as cardiac hypertrophy develops in nandrolone treated rats. Basic Res Cardiol doi:10.1007/s00395-010-0143-y

  37. Perrino C, Naga Prasad SV, Mao L, Noma T, Yan Z, Kim HS, Smithies O, Rockman HA (2006) Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest 116:1547–1560. doi:10.1172/JCI25397

    Article  PubMed  CAS  Google Scholar 

  38. Perrino C, Naga Prasad SV, Schroder JN, Hata JA, Milano C, Rockman HA (2005) Restoration of beta-adrenergic receptor signaling and contractile function in heart failure by disruption of the betaARK1/phosphoinositide 3-kinase complex. Circulation 111:2579–2587. doi:10.1161/CIRCULATIONAHA.104.508796

    Article  PubMed  CAS  Google Scholar 

  39. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888. doi:10.1038/47260

    PubMed  CAS  Google Scholar 

  40. Prosser HC, Forster ME, Richards AM, Pemberton CJ (2008) Urotensin II and urotensin II-related peptide (URP) in cardiac ischemia-reperfusion injury. Peptides 29:770–777. doi:10.1016/j.peptides.2007.08.013

    Article  PubMed  CAS  Google Scholar 

  41. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212. doi:10.1038/415206a

    Article  PubMed  CAS  Google Scholar 

  42. Shah BH, Catt KJ (2004) Matrix metalloproteinase-dependent EGF receptor activation in hypertension and left ventricular hypertrophy. Trends Endocrinol Metab 15:241–243. doi:10.1016/j.tem.2004.06.011

    Article  PubMed  CAS  Google Scholar 

  43. Storez H, Scott MG, Issafras H, Burtey A, Benmerah A, Muntaner O, Piolot T, Tramier M, Coppey-Moisan M, Bouvier M, Labbe-Jullie C, Marullo S (2005) Homo- and hetero-oligomerization of beta-arrestins in living cells. J Biol Chem 280:40210–40215. doi:10.1074/jbc.M50800120

    Article  PubMed  CAS  Google Scholar 

  44. Thomas WG, Brandenburger Y, Autelitano DJ, Pham T, Qian H, Hannan RD (2002) Adenoviral-directed expression of the type 1A angiotensin receptor promotes cardiomyocyte hypertrophy via transactivation of the epidermal growth factor receptor. Circ Res 90:135–142. doi:10.1161/hh0202.104109

    Article  PubMed  CAS  Google Scholar 

  45. Tuxworth WJ, Jr, Shiraishi H, Moschella PC, Yamane K, McDermott PJ, Kuppuswamy D (2008) Translational activation of 5’-TOP mRNA in pressure overload myocardium. Basic Res Cardiol 103:41–53. doi:10.1007/s00395-007-0682-z

    Article  PubMed  CAS  Google Scholar 

  46. Violin JD, Lefkowitz RJ (2007) Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 28:416–422. doi:10.1016/j.tips.2007.06.006

    Article  PubMed  CAS  Google Scholar 

  47. Wenzel S, Henning K, Habbig A, Forst S, Schreckenberg R, Heger J, Maxeiner H, Schluter KD (2010) TGF-beta1 improves cardiac performance via up-regulation of laminin receptor 37/67 in adult ventricular cardiomyocytes. Basic Res Cardiol 105:621–629. doi:10.1007/s00395-010-0108-1

    Article  PubMed  CAS  Google Scholar 

  48. Yoshioka J, Prince RN, Huang H, Perkins SB, Cruz FU, MacGillivray C, Lauffenburger DA, Lee RT (2005) Cardiomyocyte hypertrophy and degradation of connexin43 through spatially restricted autocrine/paracrine heparin-binding EGF. Proc Natl Acad Sci USA 102:10622–10627. doi:10.1073/pnas.0501198102

    Article  PubMed  CAS  Google Scholar 

  49. Zhang YG, Li YG, Liu BG, Wei RH, Wang DM, Tan XR, Bu DF, Pang YZ, Tang CS (2007) Urotensin II accelerates cardiac fibrosis and hypertrophy of rats induced by isoproterenol. Acta Pharmacol Sin 28:36–43. doi:10.1111/j.1745-7254.2007.00485.x

    Article  PubMed  Google Scholar 

  50. Zhu YC, Zhu YZ, Moore PK (2006) The role of urotensin II in cardiovascular and renal physiology and diseases. Br J Pharmacol 148:884–901. doi:10.1038/sj.bjp.070680

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowlegements

This work has been supported by the grant PRIN 2007 (No. 2007WS3JL3) from the Ministero dell’Università e della Ricerca Scientifica to M.C.; Cinzia Perrino MD PhD has been supported, in part, by a Grant “L’Oreal—Italia—For women in Science 2008”. The authors kindly thank Dr. Howard A. Rockman (Duke University, Durham NC) for supplying the EGFR-FLAG, EGFR-GFP, β-arrestin-GFP plasmids. This paper is dedicated to the memory of Professor Massimo Chiariello MD, passed away on March 23rd 2010.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Esposito.

Additional information

G. Esposito and C. Perrino equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2.67 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, G., Perrino, C., Cannavo, A. et al. EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy. Basic Res Cardiol 106, 577–589 (2011). https://doi.org/10.1007/s00395-011-0163-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0163-2

Keywords

Navigation