Skip to main content
Log in

Urotensin II acutely increases myocardial length and distensibility: potential implications for diastolic function and ventricular remodeling

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Urotensin II (U-II) is a cyclic peptide that may be involved in cardiovascular dysfunction. In the present study, the acute effects of U-II on diastolic properties of the myocardium were investigated. Increasing concentrations of U-II (10−8 to 10−6 M) were added to rabbit papillary muscles in the absence (n = 15) or presence of: (1) damaged endocardial endothelium (EE; n = 9); (2) U-II receptor antagonist, urantide (10−5 M; n = 7); (3) nitric oxide (NO) synthase inhibitor, NG-Nitro-l-Arginine (10−5 M; n = 9); (4) cyclooxygenase inhibitor, indomethacin (10−5 M; n = 8); (5) NO synthase and cyclooxygenase inhibitors, NG-Nitro-l-Arginine (10−5 M) and indomethacin (10−5 M), respectively, (n = 8); or (6) protein kinase C (PKC) inhibitor, chelerythrine (10−5 M; n = 9). Passive length–tension relations were constructed before and after a single concentration of U-II (10−6 M; n = 3). U-II concentration dependently decreased inotropy and increased resting muscle length (RL). At 10−6 M, active tension decreased 13.8 ± 5.4%, and RL increased to 1.007 ± 0.001 L/L max. Correcting RL to its initial value resulted in an 18.1 ± 3.0% decrease in resting tension, indicating decreased muscle stiffness, which was also suggested by the down and rightward shift of the passive length–tension relation. This effect remained unaffected by EE damage and PKC inhibition. In contrast, the presence of urantide and NO inhibition abolished the effects of U-II on myocardial stiffness, while cyclooxygenase inhibition significantly attenuated them. U-II decreases myocardial stiffness, an effect that is mediated by the urotensin-II receptor, NO, and prostaglandins. This represents a novel mechanism of acute neurohumoral modulation of diastolic function, suggesting that U-II is an important regulator of cardiac filling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao Z, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNulty DE, Ellis CE, Elshourbagy NA, Shabon U, Trill JJ, Hay DW, Ohlstein EH, Bergsma DJ, Douglas SA (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401:282–286

    Article  PubMed  CAS  Google Scholar 

  • Bern HA, Pearson D, Larson BA, Nishioka RS (1985) Neurohormones from fish tails: the caudal neurosecretory system. I. “Urophysiology” and the caudal neurosecretory system of fishes. Recent Prog Horm Res 41:533–552

    PubMed  CAS  Google Scholar 

  • Bohm F, Pernow J (2002) Urotensin II evokes potent vasoconstriction in humans in vivo. Br J Pharmacol 135:25–27

    Article  PubMed  CAS  Google Scholar 

  • Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJ, Paulus WJ (2005) Cardiomyocyte stiffness in diastolic heart failure. Circulation 111: 774–781

    Article  PubMed  Google Scholar 

  • Bottrill FE, Douglas SA, Hiley CR, White R (2000) Human urotensin-II is an endothelium-dependent vasodilator in rat small arteries. Br J Pharmacol 130: 1865–1870

    Article  PubMed  CAS  Google Scholar 

  • Bousette N, Pottinger J, Ramli W, Ohlstein EH, Dhanak D, Douglas SA, Giaid A (2006) Urotensin-II receptor blockade with SB-611812 attenuates cardiac remodeling in experimental ischemic heart disease. Peptides 11:2919–2926

    Article  Google Scholar 

  • Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83:59–115

    PubMed  CAS  Google Scholar 

  • Brutsaert DL, Meulemans AL, Spido KR, Sys SU (1988) Effects of damaging endocardial surface on the mechanical performance of isolated cardiac muscle. Circ Res 62:358–366

    PubMed  CAS  Google Scholar 

  • Brutsaert DL, De Keulenaer GW, Fransen P, Mohan P, Kaluza GL, Andries LJ, Rouleau JL, Sys SU (1996) The cardiac endothelium: functional morphology, development, and physiology. Prog Cardiovasc Dis 39:239–262

    Article  PubMed  CAS  Google Scholar 

  • Camarda V, Rizzi A, Calo G, Gendron G, Perron SI, Kostenis E, Zamboni P, Mascoli F, Regoli D (2002) Effects of human urotensin II in isolated vessels of various species; comparison with other vasoactive agents. Naunyn Schmiedebergs Arch Pharmacol 365:141–149

    Article  PubMed  CAS  Google Scholar 

  • Conlon JM, Yano K, Waugh D, Hazon N (1996) Distribution and molecular forms of urotensin II and its role in cardiovascular regulation in vertebrates. J Exp Zool 275:226–238

    Article  PubMed  CAS  Google Scholar 

  • Coulouarn Y, Lihrmann I, Jegou S, Anouar Y, Tostivint H, Beauvillain JC, Conlon JM, Bern HA, Vaudry H (1998) Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord. Proc Natl Acad Sci USA 95:15803–15808

    Article  PubMed  CAS  Google Scholar 

  • Coulouarn Y, Jegou S, Tostivint H, Vaudry H, Lihrmann I (1999) Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors. FEBS Lett 457:28–32

    Article  PubMed  CAS  Google Scholar 

  • Douglas SA, Sulpizio AC, Piercy V, Sarau HM, Ames RS, Aiyar NV, Ohlstein EH, Willette RN (2000) Differential vasoconstrictor activity of human urotensin-II in vascular tissue isolated from the rat, mouse, dog, pig, marmoset and cynomolgus monkey. Br J Pharmacol 131:1262–1274

    Article  PubMed  CAS  Google Scholar 

  • Douglas SA, Tayara L, Ohlstein EH, Halawa N, Giaid A (2002) Congestive heart failure and expression of myocardial urotensin II. Lancet 359:1990–1997

    Article  PubMed  CAS  Google Scholar 

  • Dschietzig T, Bartsch C, Pregla R, Zurbrugg HR, Armbruster FP, Richter C, Laule M, Romeyke E, Neubert C, Voelter W, Baumann G, Stangl K (2002) Plasma levels and cardiovascular gene expression of urotensin-II in human heart failure. Regul Pept 110:33–38

    Article  PubMed  CAS  Google Scholar 

  • Fontes-Sousa AP, Brás-Silva C, Pires AP, Monteiro-Sousa D, Leite-Moreira AF (2006). Urotensin-II: a novel neurohumoral modulator of diastolic function. Circulation 114:II–315

    Google Scholar 

  • Fukuda N, Wu Y, Nair P, Granzier HL (2005) Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. J Gen Physiol 125:257–271

    Article  PubMed  CAS  Google Scholar 

  • Gardiner SM, March JE, Kemp PA, Davenport AP, Bennett T (2001) Depressor and regionally-selective vasodilator effects of human and rat urotensin II in conscious rats. Br J Pharmacol 132:1625–1629

    Article  PubMed  CAS  Google Scholar 

  • Gong H, Wang YX, Zhu YZ, Wang WW, Yao T, Zhu YC (2004) Cellular distribution of GPR14 and the positive inotropic role of urotensin II in the myocardium in adult rat. J Appl Physiol 97:2228–2235

    Article  PubMed  CAS  Google Scholar 

  • Hassan GS, Chouiali F, Saito T, Hu F, Douglas SA, Ao Z, Willette RN, Ohlstein EH, Giais A (2003) Effect of human urotensin-II infusion on hemodynamics and cardiac function. Can J Physiol Pharm 81:125–128

    Article  CAS  Google Scholar 

  • Heymes C, Vanderheyden M, Bronzwaer JG, Shah AM, Paulus WJ (1999) Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation 99:3009–3016

    PubMed  CAS  Google Scholar 

  • Ishihata A, Sakai M, Katano Y (2006) Vascular contractile effect of urotensin II in young and aged rats: influence of aging and contribution of endothelial nitric oxide. Peptides 27:80–86

    Article  PubMed  CAS  Google Scholar 

  • Ito N, Bartunek J, Spitzer KW, Lorell BH (1997) Effects of the nitric oxide donor sodium nitroprusside on intracellular pH and contraction in hypertrophied myocytes. Circulation 95:2303–2311

    PubMed  CAS  Google Scholar 

  • Johns DG, Ao Z, Naselsky D, Herold CL, Maniscalco K, Sarov-Blat L, Steplewski K, Aiyar N, Douglas SA (2004) Urotensin-II-mediated cardiomyocyte hypertrophy: effect of receptor antagonism and role of inflammatory mediators. Naunyn Schmiedebergs Arch Pharmacol 370:238–250

    Article  PubMed  CAS  Google Scholar 

  • Kass DA, Bronzwaer JG, Paulus WJ (2004) What mechanisms underlie diastolic dysfunction in heart failure? Circ Res 94:1533–1542

    Article  PubMed  CAS  Google Scholar 

  • Leite-Moreira AF (2006) Current perspectives in diastolic dysfunction and diastolic heart failure. Heart 92:712–718

    Article  PubMed  Google Scholar 

  • Leite-Moreira AF, Bras-Silva C, Pedrosa CA, Rocha-Sousa AA (2003) ET-1 increases distensibility of acutely loaded myocardium: a novel ETA and Na+/H+ exchanger-mediated effect. Am J Physiol Heart Circ Physiol 284:H1332–1339

    PubMed  CAS  Google Scholar 

  • Leite-Moreira AF, Castro-Chaves P, Pimentel-Nunes P, Lima-Carneiro A, Guerra MS, Soares JB, Ferreira-Martins J (2006) Angiotensin II acutely decreases myocardial stiffness: a novel AT1, PKC and Na+/H+ exchanger-mediated effect. Br J Pharmacol 147:690–697

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wang J, Russell FD, Molenaar P (2005) Activation of calcineurin in human failing heart ventricle by endothelin-1, angiotensin II and urotensin II. Br J Pharmacol 145:432–440

    Article  PubMed  CAS  Google Scholar 

  • Marchese A, Heiber M, Nguyen T, Heng HH, Saldivia VR, Cheng R, Murphy PM, Tsui LC, Shi X, Gregor P, George SR, O’Dwd BF, Docherty JM (1995) Cloning and chromosomal mapping of three novel genes, GPR9, GPR10, and GPR14, encoding receptors related to interleukin 8, neuropeptide Y, and somatostatin receptors. Genomics 29:335–344

    Article  PubMed  CAS  Google Scholar 

  • Massion PB, Feron O, Dessy C, Balligand J-L (2003) Nitric oxide and cardiac function. Ten tears after, and continuing. Circ Res 93:388–398

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Shichiri M, Imai T, Iwashina M, Tanaka H, Takasu N, Hirata Y (2001) Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues. J Hypertens 19:2185–2190

    Article  PubMed  CAS  Google Scholar 

  • Morimoto A, Hasegawa H, Cheng H -J, Cheng C -P (2002) Urotensin II inhibits left ventricular and myocytes contractile performance and [Ca2+]i transient: normal vs CHF. Circulation 106(Suppl. II):II–26

    Google Scholar 

  • Opgaard OS, Nothacker HP, Ehlert FJ, Krause DN (2000) Human urotensin II mediates vasoconstriction via an increase in inositol phosphates. Eur J Pharmacol 406:265–271

    Article  CAS  Google Scholar 

  • Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96:1320–1329

    PubMed  CAS  Google Scholar 

  • Russell FD (2004) Emerging roles of urotensin-II in cardiovascular disease. Pharmacol Ther 103:223–243

    Article  PubMed  CAS  Google Scholar 

  • Russell FD, Molenaar P (2004) Investigation of signalling pathways that mediate the inotropic effect of urotensin-II in human heart. Cardiovasc Res 63:673–681

    Article  PubMed  CAS  Google Scholar 

  • Russell FD, Molenaar P, O’Brien DM (2001) Cardiostimulant effects of urotensin-II in human heart in vitro. Br J Pharmacol 132:5–9

    Article  PubMed  CAS  Google Scholar 

  • Russell FD, Meyers D, Galbraith AJ, Bett N, Toth I, Kearns P, Molenaar P (2003) Elevated plasma levels of human urotensin-II immunoreactivity in congestive heart failure. Am J Physiol Heart Circ Physiol 285:H1576–1581

    PubMed  CAS  Google Scholar 

  • Sauzeau V, Le Mellionnec E, Bertoglio J, Scalbert E, Pacaud P, Loirand G (2001) Human urotensin II-induced contraction and arterial smooth muscle cell proliferation are mediated by RhoA and Rho-kinase. Circ Res 88:1102–1104

    Google Scholar 

  • Shah AM, Spurgeon HA, Sollott SJ, Talo A, Lakatta EG (1994) 8-Bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res 74:970–978

    PubMed  CAS  Google Scholar 

  • Soares JB, Rocha-Sousa A, Castro-Chaves P, Henriques-Coelho T, Leite-Moreira AF (2006) Inotropic and lusitropic effects of ghrelin and their modulation by the endocardial endothelium, NO, prostaglandins, GHS-R1a and KCa channels. Peptides 27:1616–1623

    Article  PubMed  CAS  Google Scholar 

  • Stirrat A, Gallagher M, Douglas SA, Ohlstein EH, Berry C, Kirk A, Richardson M, MacLean MR (2001) Potent vasodilator responses to human urotensin-II in human pulmonary and abdominal resistance arteries. Am J Physiol Heart Circ Physiol 280:925–928

    Google Scholar 

  • Tal M, Ammar DA, Karpuj M, Krizhanovsky V, Naim M, Thompson DA (1995) A novel putative neuropeptide receptor expressed in neural tissue, including sensory epithelia. Biochem Biophys Res Commun 209:752–759

    Article  PubMed  CAS  Google Scholar 

  • Tasaki K, Hori M, Ozaki H, Karaki H, Wakabayashi I (2004) Mechanism of human urotensin II-induced contraction in rat aorta. J Pharmacol Sci 94:376–383

    Article  PubMed  CAS  Google Scholar 

  • Tzanidis A, Hannan RD, Thomas WG, Onan D, Autelitano DJ, See F, Kelly DJ, Gilbert RE, Krum H (2003) Direct actions of urotensin II on the heart: implications for cardiac fibrosis and hypertrophy. Circ Res 93:246–253

    Article  PubMed  CAS  Google Scholar 

  • van Heerebeek L, Borbely A, Niessen HW, Bronzwaer JG, van der Velden J, Stienen GJ, Linke WA, Laarman GJ, Paulus WJ (2006) Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973

    Article  PubMed  Google Scholar 

  • Wang YX, Ding YJ, Zhu YZ, Shi Y, Yao T, Zhu YC W (2007) Role of PKC in the novel synergistic action of urotensin II and angiotensin II and in urotensin II-induced vasoconstriction. Am J Physiol Heart Circ Physiol 292:H348–H359

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Pakala R, Katagiri T, Benedict CR (2001) Synergistic effect of urotensin II with mildly oxidized LDL on DNA synthesis in vascular smooth muscle cells. Circulation 104:16–18

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Kanome T, Miyazaki A, Katagiri T (2006) Human urotensin II as a link between hypertension and coronary artery disease. Hypertens Res 29:375–387

    Article  PubMed  CAS  Google Scholar 

  • Weber KT, Sun Y, Guarda E (1994) Structural remodeling in hypertensive heart disease and the role of hormones. Hypertension 23:869–877

    PubMed  CAS  Google Scholar 

  • Wheeler-Jones CP (2005) Cell signalling in the cardiovascular system: an overview. Heart 91:1366–1374

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Masuyama T, Sakata Y, Nishikawa N, Mano T, Yoshida J, Miwa T, Sugawara M, Yamaguchi Y, Ookawara T, Suzuki K, Hori M (2002) Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart. Cardiovasc Res 55:76–82

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H (2002) Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90:1181–1188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Doctor Maria José Prata for her assistance in data analysis.

This paper is supported by the Portuguese Foundation for Science and Technology (grant number POCI/SAU-FCT/60803/2004, partially funded by FEDER) through the Cardiovascular R&D Unit (FCT number 51/94). Ana Patrícia Fontes-Sousa is supported by a grant from the Portuguese Foundation for Science and Technology (number SFRH/BD/22590/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelino F. Leite-Moreira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(GIF 3 kb)

High resolution image file (TIF 152 kb)

Fig. S2

(GIF 3 kb)

High resolution image file (TIF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontes-Sousa, A.P., Brás-Silva, C., Pires, A.L. et al. Urotensin II acutely increases myocardial length and distensibility: potential implications for diastolic function and ventricular remodeling. Naunyn-Schmied Arch Pharmacol 376, 107–115 (2007). https://doi.org/10.1007/s00210-007-0180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0180-8

Keywords

Navigation