Skip to main content
Log in

Translational activation of 5′-TOP mRNA in pressure overload myocardium

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The present study was conducted to determine the magnitude and duration of ribosomal protein translation in response to pressure overload and determine if additional, paracrine events associated with mechanical transduction, such as integrin activation using a bioactive peptide ligand, RGD or endothelin stimulation lead to ribosomal protein translation. Polysome analysis of ventricular tissue samples obtained from an in vivo model of right-ventricular pressure overload (RVPO) showed a significant shift in the proportion of a 5′-terminal oligopyrimidine (5′-TOP) mRNA, rpL32, associated with the polysomal fraction when compared with non-5′-TOP mRNAs, β-actin and β-myosin heavy chain (β-MHC), in the early stages of the hypertrophic response (24–48 h). Furthermore, this increase in polysome-bound rpL32 mRNA was accompanied by the phosphorylation of mammalian target of rapamycin (mTOR), p70 S6 kinase (S6K1), and S6 ribosomal protein. In our in vitro studies, treatment of primary cultures of adult feline cardiomyocytes (cardiocytes) with 100 nM endothelin, 9 mM RGD, 100 nM insulin, or 100 nM TPA activated mTOR via distinct signaling pathways and resulted in an increased proportion of polysome-bound rpL32 mRNA. Pre-treatment of cardiocytes with the mTOR inhibitor rapamycin blocked the agonist-induced rpL32 mRNA mobilization to polysomes. These results show that mechanisms that regulate ribosomal biogenesis in the myocardium are dynamically sensitive to pressure overload. Furthermore, our in vitro studies indicate that distinct pathways are operational during the early course of hypertrophic growth and converge to activate mTOR resulting in the translational activation of 5′-TOP mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7
Fig 8

Similar content being viewed by others

References

  1. Aloni R, Peleg D, Meyuhas O (1992) Selective translational control and nonspecific posttranscriptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Mol Cell Biol 12:2203–2212

    PubMed  CAS  Google Scholar 

  2. Avni D, Biberman Y, Meyuhas O (1997) The 5′ terminal oligopyrimidine tract confers translational control on TOP mRNAs in a cell type- and sequence context-dependent manner. Nucleic Acids Res 25:995–1001

    Article  PubMed  CAS  Google Scholar 

  3. Balasubramanian S, Kuppuswamy D (2003) RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells. J Biol Chem 278:42214–42224

    Article  PubMed  CAS  Google Scholar 

  4. Caldarola S, Amaldi F, Proud CG, Loreni F (2004) Translational regulation of terminal oligopyrimidine mRNAs induced by serum and amino acids involves distinct signaling events. J Biol Chem 279:13522–13531

    Article  PubMed  CAS  Google Scholar 

  5. Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151–3171

    Article  PubMed  CAS  Google Scholar 

  6. Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:279–297

    Article  PubMed  CAS  Google Scholar 

  7. Geyer PK, Meyuhas O, Perry RP, Johnson LF (1982) Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Mol Cell Biol 2:685–693

    PubMed  CAS  Google Scholar 

  8. Goldsmith EC, Carver W, McFadden A, Goldsmith JG, Price RL, Sussman M, Lorell BH, Cooper G, Borg TK (2003) Integrin shedding as a mechanism of cellular adaptation during cardiac growth. Am J Physiol Heart Circ Physiol 284:H2227–H2234

    PubMed  CAS  Google Scholar 

  9. Iijima Y, Laser M, Shiraishi H, Willey CD, Sundaravadivel B, Xu L, McDermott PJ, Kuppuswamy D (2002) c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells. J Biol Chem 277:23065–23075

    Article  PubMed  CAS  Google Scholar 

  10. Ivester CT, Tuxworth WJ, Cooper Gt, McDermott PJ (1995) Contraction accelerates myosin heavy chain synthesis rates in adult cardiocytes by an increase in the rate of translational initiation. J Biol Chem 270:21950–21957

    Article  PubMed  CAS  Google Scholar 

  11. Jefferson LS, Kimball SR (2003) Amino acids as regulators of gene expression at the level of mRNA translation. J Nutr 133:2046S–2051S

    PubMed  CAS  Google Scholar 

  12. Kaspar RL, Kakegawa T, Cranston H, Morris DR, White MW (1992) A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation. J Biol Chem 267:508–514

    PubMed  CAS  Google Scholar 

  13. Kato S, Ivester CT, Cooper Gt, Zile MR, McDermott PJ (1995) Growth effects of electrically stimulated contraction on adult feline cardiocytes in primary culture. Am J Physiol 268:H2495–H2504

    PubMed  CAS  Google Scholar 

  14. Kumar V, Pandey P, Sabatini D, Kumar M, Majumder PK, Bharti A, Carmichael G, Kufe D, Kharbanda S (2000) Functional interaction between RAFT1/FRAP/mTOR and protein kinase cdelta in the regulation of cap-dependent initiation of translation. Embo J 19:1087–1097

    Article  PubMed  CAS  Google Scholar 

  15. Laser M, Kasi VS, Hamawaki M, Cooper Gt, Kerr CM, Kuppuswamy D (1998) Differential activation of p70 and p85 S6 kinase isoforms during cardiac hypertrophy in the adult mammal. J Biol Chem 273:24610–24619

    Article  PubMed  CAS  Google Scholar 

  16. Laser M, Willey CD, Jiang W, Cooper Gt, Menick DR, Zile MR, Kuppuswamy D (2000) Integrin activation and focal complex formation in cardiac hypertrophy. J Biol Chem 275:35624–35630

    Article  PubMed  CAS  Google Scholar 

  17. Lee TM, Lin MS, Tsai CH, Chang NC (2007) Effects of pravastatin on ventricular remodeling by activation of myocardial KATP channels in infarcted rats: role of 70-kDa S6 kinase. Basic Res Cardiol 102:171–182

    Article  PubMed  CAS  Google Scholar 

  18. Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O (1991) Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci USA 88:3319–3323

    Article  PubMed  CAS  Google Scholar 

  19. Malik RK, Parsons JT (1996) Integrin-dependent activation of the p70 ribosomal S6 kinase signaling pathway. J Biol Chem 271:29785–29791

    Article  PubMed  CAS  Google Scholar 

  20. Manso AM, Elsherif L, Kang SM, Ross RS (2006) Integrins, membrane-type matrix metalloproteinases and ADAMs: potential implications for cardiac remodeling. Cardiovasc Res 69:574–584

    Article  PubMed  CAS  Google Scholar 

  21. Marino TA, Houser SR, Cooper Gt (1983) Early morphological alterations of pressure-overloaded cat right ventricular myocardium. Anat Rec 207:417–426

    Article  PubMed  CAS  Google Scholar 

  22. Marino TA, Kent RL, Uboh CE, Fernandez E, Thompson EW, Cooper Gt (1985) Structural analysis of pressure versus volume overload hypertrophy of cat right ventricle. Am J Physiol 249:H371–H379

    PubMed  CAS  Google Scholar 

  23. McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S (2004) Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109:3050–3055

    Article  PubMed  CAS  Google Scholar 

  24. Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 83:13–25

    PubMed  CAS  Google Scholar 

  25. Nemazanyy I, Panasyuk G, Zhyvoloup A, Panayotou G, Gout IT, Filonenko V (2004) Specific interaction between S6K1 and CoA synthase: a potential link between the mTOR/S6K pathway, CoA biosynthesis and energy metabolism. FEBS Lett 578:357–362

    Article  PubMed  CAS  Google Scholar 

  26. Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ, Thomas G (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102:14238–14243

    Article  PubMed  CAS  Google Scholar 

  27. Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S, Kozma SC, Thomas G (2004) S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24:3112–3124

    Article  PubMed  CAS  Google Scholar 

  28. Perry RP, Meyuhas O (1990) Translational control of ribosomal protein production in mammalian cells. Enzyme 44:83–92

    PubMed  CAS  Google Scholar 

  29. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  30. Proud CG (2002) Control of the translational machinery in mammalian cells. Eur J Biochem 269:5337

    Article  PubMed  CAS  Google Scholar 

  31. Proud CG (2004) Role of mTOR signalling in the control of translation initiation and elongation by nutrients. Curr Top Microbiol Immunol 279:215–244

    PubMed  CAS  Google Scholar 

  32. Reiter AK, Anthony TG, Anthony JC, Jefferson LS, Kimball SR (2004) The mTOR signaling pathway mediates control of ribosomal protein mRNA translation in rat liver. Int J Biochem Cell Biol 36:2169–2179

    Article  PubMed  CAS  Google Scholar 

  33. Rolfe M, McLeod LE, Pratt PF, Proud CG (2005) Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochem J 388:973–984

    Article  PubMed  CAS  Google Scholar 

  34. Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119

    Article  PubMed  CAS  Google Scholar 

  35. Russo LA, Morgan HE (1989) Control of protein synthesis and ribosome formation in rat heart. Diabetes Metab Rev 5:31–47

    Article  PubMed  CAS  Google Scholar 

  36. Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, Dor Y, Zisman P, Meyuhas O (2005) Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19:2199–2211

    Article  PubMed  CAS  Google Scholar 

  37. Ruwhof C, van der Laarse A (2000) Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47:23–37

    Article  PubMed  CAS  Google Scholar 

  38. Stolovich M, Tang H, Hornstein E, Levy G, Cohen R, Bae SS, Birnbaum MJ, Meyuhas O (2002) Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol 22:8101–8113

    Article  PubMed  CAS  Google Scholar 

  39. Sugden PH (2003) Ras, Akt, and mechanotransduction in the cardiac myocyte. Circ Res 93:1179–1192

    Article  PubMed  CAS  Google Scholar 

  40. Sussman MA, McCulloch A, Borg TK (2002) Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy. Circ Res 91:888–898

    Article  PubMed  CAS  Google Scholar 

  41. Thomas G (2002) The S6 kinase signaling pathway in the control of development and growth. Biol Res 35:305–313

    Article  PubMed  CAS  Google Scholar 

  42. Tuxworth WJ Jr, Wada H, Ishibashi Y, McDermott PJ (1999) Role of load in regulating eIF-4F complex formation in adult feline cardiocytes. Am J Physiol 277:H1273–H1282

    PubMed  CAS  Google Scholar 

  43. van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, Schrier PI, van der Laarse A (2001) The role of angiotensin II, endothelin-1 and transforming growth factor-beta as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 218:113–124

    Article  PubMed  Google Scholar 

  44. van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, Schrier PI, van der Laarse A (2000) Rapid effects of stretched myocardial and vascular cells on gene expression of neonatal rat cardiomyocytes with emphasis on autocrine and paracrine mechanisms. Arch Biochem Biophys 381:67–73

    Article  PubMed  CAS  Google Scholar 

  45. Wada H, Ivester CT, Carabello BA, Cooper Gt, McDermott PJ (1996) Translational initiation factor eIF-4E. A link between cardiac load and protein synthesis. J Biol Chem 271:8359–8364

    Article  PubMed  CAS  Google Scholar 

  46. Zhu J, Spencer ED, Kaspar RL (2003) Differential translation of TOP mRNAs in rapamycin-treated human B lymphocytes. Biochim Biophys Acta 1628:50–55

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Charlene Kerr for her excellent technical assistance. This study was supported by Program Project Grant HL-48788 and by Merit and REAP awards from the Research Service of Veterans Affairs, and Institutional Postdoctoral Training Grant HL-07260 from the NIH (to W.J.T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhandapani Kuppuswamy PhD.

Additional information

Returned for 1. revision: 18 June 2007 1. Revision received: 28 August 2007 Returned for 2. revision: 30 August 2007 2. Revision received: 6 September 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuxworth, W.J., Shiraishi, H., Moschella, P.C. et al. Translational activation of 5′-TOP mRNA in pressure overload myocardium. Basic Res Cardiol 103, 41–53 (2008). https://doi.org/10.1007/s00395-007-0682-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-007-0682-z

Key words

Navigation