Skip to main content

Advertisement

Log in

Tumor necrosis factor-α-induced nuclear factor-kappaB activation in human cardiomyocytes is mediated by NADPH oxidase

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

An elevated level of tumor necrosis factor (TNF)-α is implicated in several cardiovascular diseases including heart failure. Numerous reports have demonstrated that TNF-α activates nuclear factor (NF)-kappaB, resulting in the upregulation of several genes that regulate inflammation, proliferation, and apoptosis of cardiomyocytes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of reactive oxygen species (ROS), is also activated by TNF-α and plays a crucial role in redox-sensitive signaling pathways. The present study investigated whether NADPH oxidase mediates TNF-α-induced NF-kappaB activation and NF-kappaB-mediated gene expression. Human cardiomyocytes were treated with recombinant TNF-α with or without pretreatment with diphenyleneiodonium (DPI) and apocynin, inhibitors of NADPH oxidase. TNF-α-induced ROS production was measured using 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate assay. TNF-α-induced NF-kappaB activation was also examined using immunoblot; NF-kappaB binding to its binding motif was determined using a Cignal reporter luciferase assay and an electrophoretic mobility shift assay. TNF-α-induced upregulation of interleukin (IL)-1β and vascular cell adhesion molecule (VCAM)-1 was investigated using real-time PCR and immunoblot. TNF-α-induced ROS production in cardiomyocytes was mediated by NADPH oxidase. Phosphorylation of IKK-α/β and p65, degradation of IkappaBα, binding of NF-kappaB to its binding motif, and upregulation of IL-1β and VCAM-1 induced by TNF-α were significantly attenuated by treatment with DPI and apocynin. Collectively, these findings demonstrate that NADPH oxidase plays a role in regulation of TNF-α-induced NF-kappaB activation and upregulation of proinflammatory cytokines, IL-1β and VCAM-1, in human cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adli M, Merkhofer E, Cogswell P, Baldwin AS (2010) IKKalpha and IKKbeta each function to regulate NF-kappaB activation in the TNF-induced/canonical pathway. PLoS One 5:e9428

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anrather J, Racchumi G, Iadecola C (2006) NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 281:5657–5667

    Article  PubMed  CAS  Google Scholar 

  3. Bajaj G, Sharma RK (2006) TNF-alpha-mediated cardiomyocyte apoptosis involves caspase-12 and calpain. Biochem Biophys Res Commun 345:1558–1564

    Article  PubMed  CAS  Google Scholar 

  4. Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377

    Article  PubMed  CAS  Google Scholar 

  5. Brar SS, Kennedy TP, Sturrock AB, Huecksteadt TP, Quinn MT, Murphy TM, Chitano P, Hoidal JR (2002) NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 282:L782–795

    PubMed  CAS  Google Scholar 

  6. Bubici C, Papa S, Dean K, Franzoso G (2006) Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25:6731–6748

    Article  PubMed  CAS  Google Scholar 

  7. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD, Cave AC, Shah AM (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–805

    Article  PubMed  CAS  Google Scholar 

  8. Cai H, Griendling KK, Harrison DG (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24:471–478

    Article  PubMed  CAS  Google Scholar 

  9. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8:691–728

    Article  PubMed  CAS  Google Scholar 

  10. Cayatte AJ, Rupin A, Oliver-Krasinski J, Maitland K, Sansilvestri-Morel P, Boussard MF, Wierzbicki M, Verbeuren TJ, Cohen RA (2001) S17834, a new inhibitor of cell adhesion and atherosclerosis that targets nadph oxidase. Arterioscler Thromb Vasc Biol 21:1577–1584

    Article  PubMed  CAS  Google Scholar 

  11. Cross JV, Templeton DJ (2004) Thiol oxidation of cell signaling proteins: controlling an apoptotic equilibrium. J Cell Biochem 93:104–111

    Article  PubMed  CAS  Google Scholar 

  12. Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG (2004) Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J Biol Chem 279:163–168

    Article  PubMed  CAS  Google Scholar 

  13. DeLeo FR, Nauseef WM, Jesaitis AJ, Burritt JB, Clark RA, Quinn MT (1995) A domain of p47phox that interacts with human neutrophil flavocytochrome b558. J Biol Chem 270:26246–26251

    Article  PubMed  CAS  Google Scholar 

  14. Diatchuk V, Lotan O, Koshkin V, Wikstroem P, Pick E (1997) Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem 272:13292–13301

    Article  PubMed  CAS  Google Scholar 

  15. Ding Y, Chen ZJ, Liu S, Che D, Vetter M, Chang CH (2005) Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol 57:111–116

    Article  PubMed  CAS  Google Scholar 

  16. Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453–471

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY, McTiernan C (2000) The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 35:537–544

    Article  PubMed  CAS  Google Scholar 

  18. Gauss KA, Nelson-Overton LK, Siemsen DW, Gao Y, DeLeo FR, Quinn MT (2007) Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-alpha. J Leukoc Biol 82:729–741

    Article  PubMed  CAS  Google Scholar 

  19. Gertzberg N, Neumann P, Rizzo V, Johnson A (2004) NAD(P)H oxidase mediates the endothelial barrier dysfunction induced by TNF-alpha. Am J Physiol Lung Cell Mol Physiol 286:L37–48

  20. Gianni D, Taulet N, Zhang H, DerMardirossian C, Kister J, Martinez L, Roush WR, Brown SJ, Bokoch GM, Rosen H (2010) A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 5:981–993

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Gordon JW, Shaw JA, Kirshenbaum LA (2011) Multiple facets of NF-kappaB in the heart: to be or not to NF-kappaB. Circ Res 108:1122–1132

    Article  PubMed  CAS  Google Scholar 

  22. Gostner JM, Fong D, Wrulich OA, Lehne F, Zitt M, Hermann M, Krobitsch S, Martowicz A, Gastl G, Spizzo G (2011) Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer 11:45

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  PubMed  CAS  Google Scholar 

  24. Healy NC, O’Connor R (2009) Sequestration of PDLIM2 in the cytoplasm of monocytic/macrophage cells is associated with adhesion and increased nuclear activity of NF-kappaB. J Leukoc Biol 85:481–490

    Article  PubMed  CAS  Google Scholar 

  25. Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51:211–217

    Article  PubMed  Google Scholar 

  26. Hiscott J, Marois J, Garoufalis J, D’Addario M, Roulston A, Kwan I, Pepin N, Lacoste J, Nguyen H, Bensi G (1993) Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol Cell Biol 13:6231–6240

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Kamata H, Manabe T, Oka S, Kamata K, Hirata H (2002) Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 519:231–237

    Article  PubMed  CAS  Google Scholar 

  28. Laleu B, Gaggini F, Orchard M, Fioraso-Cartier L, Cagnon L, Houngninou-Molango S, Gradia A, Duboux G, Merlot C, Heitz F (2010) First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med Chem 53:7715–7730

    Article  PubMed  CAS  Google Scholar 

  29. Li H, Lin X (2008) Positive and negative signaling components involved in TNFalpha-induced NF-kappaB activation. Cytokine 41:1–8

    Article  PubMed  Google Scholar 

  30. Li JM, Fan LM, Christie MR, Shah AM (2005) Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 25:2320–2330

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Li MY, Lai FJ, Hsu LJ, Lo CP, Cheng CL, Lin SR, Lee MH, Chang JY, Subhan D, Tsai MS (2009) Dramatic co-activation of WWOX/WOX1 with CREB and NF-kappaB in delayed loss of small dorsal root ganglion neurons upon sciatic nerve transection in rats. PLoS One 4:e7820

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li YL, Gao L, Zucker IH, Schultz HD (2007) NADPH oxidase-derived superoxide anion mediates angiotensin II-enhanced carotid body chemoreceptor sensitivity in heart failure rabbits. Cardiovasc Res 75:546–554

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Libermann TA, Baltimore D (1990) Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10:2327–2334

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Liu HR, Tao L, Gao E, Qu Y, Lau WB, Lopez BL, Christopher TA, Koch W, Yue TL, Ma XL (2009) Rosiglitazone inhibits hypercholesterolaemia-induced myeloperoxidase upregulation—a novel mechanism for the cardioprotective effects of PPAR agonists. Cardiovasc Res 81:344–352

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  36. Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, Medford RM (1993) Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 92:1866–1874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Moe KT, Yin NO, Naylynn TM, Khairunnisa K, Wutyi MA, Gu Y, Atan MS, Wong MC, Koh TH, Wong P (2011) Nox2 and Nox4 mediate tumour necrosis factor-alpha-induced ventricular remodelling in mice. J Cell Mol Med 15:2601–2613

    Article  PubMed  CAS  Google Scholar 

  38. Moe KT, Aulia S, Jiang F, Chua YL, Koh TH, Wong MC, Dusting GJ (2006) Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis factor-alpha in human aortic smooth muscle and embryonic kidney cells. J Cell Mol Med 10:231–239

    Article  PubMed  CAS  Google Scholar 

  39. Moe TK, Ziliang J, Barathi A, Beuerman RW (2001) Differential expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta actin and hypoxanthine phosphoribosyltransferase (HPRT) in postnatal rabbit sclera. Curr Eye Res 23:44–50

    Article  PubMed  CAS  Google Scholar 

  40. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21:103–115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799

    Article  PubMed  CAS  Google Scholar 

  42. Nishimura D, Ishikawa H, Matsumoto K, Shibata H, Motoyoshi Y, Fukuta M, Kawashimo H, Goto T, Taura N, Ichikawa T (2006) DHMEQ, a novel NF-kappaB inhibitor, induces apoptosis and cell-cycle arrest in human hepatoma cells. Int J Oncol 29:713–719

    PubMed  CAS  Google Scholar 

  43. Nowak DE, Tian B, Jamaluddin M, Boldogh I, Vergara LA, Choudhary S, Brasier AR (2008) RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes. Mol Cell Biol 28:3623–3638

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, Baliga R, Wang J, Siwik DA, Singh K (2001) Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89:453–460

    Article  PubMed  CAS  Google Scholar 

  45. Schieven GL, Kirihara JM, Myers DE, Ledbetter JA, Uckun FM (1993) Reactive oxygen intermediates activate NF-kappa B in a tyrosine kinase-dependent mechanism and in combination with vanadate activate the p56lck and p59fyn tyrosine kinases in human lymphocytes. Blood 82:1212–1220

    PubMed  CAS  Google Scholar 

  46. Shahrestanifar M, Fan X, Manning DR (1999) Lysophosphatidic acid activates NF-kappaB in fibroblasts A reuirement for multiple inputs. J Biol Chem 274:3828–3833

    Article  PubMed  CAS  Google Scholar 

  47. ten Freyhaus H, Huntgeburth M, Wingler K, Schnitker J, Baumer AT, Vantler M, Bekhite MM, Wartenberg M, Sauer H, Rosenkranz S (2006) Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 71:331–341

    Article  PubMed  Google Scholar 

  48. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP (1999) Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17:331–367

    Article  PubMed  CAS  Google Scholar 

  49. Wind S, Beuerlein K, Eucker T, Muller H, Scheurer P, Armitage ME, Ho H, Schmidt HH, Wingler K (2010) Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol 161:885–898

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Wu J, Xu H, Yang M, Martin CM, Kvietys PR, Rui T (2009) NADPH oxidase contributes to conversion of cardiac myocytes to a proinflammatory phenotype in sepsis. Free Radic Biol Med 46:1338–1345

    Article  PubMed  CAS  Google Scholar 

  51. Ximenes VF, Kanegae MP, Rissato SR, Galhiane MS (2007) The oxidation of apocynin catalyzed by myeloperoxidase: proposal for NADPH oxidase inhibition. Arch Biochem Biophys 457:134–141

    Article  PubMed  CAS  Google Scholar 

  52. Yang CM, Lee IT, Hsu RC, Chi PL, Hsiao LD (2013) NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-alpha-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells. Toxicol Appl Pharmacol 272:431–442

    Article  PubMed  CAS  Google Scholar 

  53. Zhang L, Cheng J, Ma Y, Thomas W, Zhang J, Du J (2005) Dual pathways for nuclear factor kappaB activation by angiotensin II in vascular smooth muscle: phosphorylation of p65 by IkappaB kinase and ribosomal kinase. Circ Res 97:975–982

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from SingHealth Research Foundation (SHF/FG436P/2010), Singapore to KTM.

Conflict of interest

No conflict of interest to disclose for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyaw Thu Moe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moe, K.T., Khairunnisa, K., Yin, N.O. et al. Tumor necrosis factor-α-induced nuclear factor-kappaB activation in human cardiomyocytes is mediated by NADPH oxidase. J Physiol Biochem 70, 769–779 (2014). https://doi.org/10.1007/s13105-014-0345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0345-0

Keywords

Navigation