Skip to main content

Advertisement

Log in

Effect of catheter-based transendocardial delivery of stromal cell-derived factor 1α on left ventricular function and perfusion in a porcine model of myocardial infarction

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Myocardial regeneration after myocardial infarction can occur via stem cell recruitment. Stromal cell-derived factor 1α (SDF-1α) has been shown to be critical for stem cell homing to injured tissue.

Methods

Myocardial infarction was induced in pigs via microembolization of the distal left anterior descending artery. Two weeks after myocardial infarction animals underwent catheter-based transendocardial injection of SDF-1α into the periinfarct myocardium (18 injections, 5 ìg per injection) (n = 12) or sham-intervention (n = 8). Tc99m sestamibi single-photon emission computed tomography (SPECT) and electromechanical mapping (EMM) of the left ventricle were performed two and seven weeks after myocardial infarction.

Results

Infarct size by tetrazolium staining was similar in both groups (8.9 ±1.2% of left ventricle vs. 8.9 ± 2.6%). Vessel density in the periinfarct area was significantly higher in SDF-1α treated animals than in controls (349 ± 17/mm2 vs. 276 ± 21/mm2, p < 0.05). Myocardial perfusion (SPECT) did not change in either group. Ejection fraction and stroke volume (EMM) decreased in SDF-1α animals and increased in controls (difference between groups p = 0.05 for ejection fraction and p < 0.05 for stroke volume). Linear local shortening (EMM) did not change in controls (11.4 ± 1.3% to 11.5 ± 0.5%) but decreased significantly in SDF-1α treated animals (12.1 ± 0.9% to 8.4 ± 0.9%, p < 0.05, p < 0.05 for difference between groups). SDF-1 delivery was associated with a substantial loss of collagen in the periinfarct area (32±5% vs. 61±6% in control animals, p < 0.005).

Conclusion

A strategy to augment stem cell homing by catheter-based transendocardial delivery of SDF-1α in experimental myocardial infarction increases periinfarct vessel density, fails to improve myocardial perfusion, is associated with loss of collagen in the periinfarct area and impairs left ventricular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ (2004) Stromal cell–derived factor-1α plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110:3300–3305

    Article  PubMed  Google Scholar 

  2. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    Article  PubMed  CAS  Google Scholar 

  3. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  PubMed  CAS  Google Scholar 

  4. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) Highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184:110l–1109

    Article  Google Scholar 

  5. Burns SM, Sharples LM, Tait S, Caine N, Wallwork J, Schofield PM (1999) The transmyocardial laser revascularization international registry report. Eur Heart J 20:31–3

    Article  PubMed  CAS  Google Scholar 

  6. Buschmann I, Katzer E, Bode C (2003) Arteriogenesis—is this terminology necessary? Basic Res Cardiol 98:1–5

    Article  PubMed  Google Scholar 

  7. Ceradini DJ, Kulkarni AJ, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  PubMed  CAS  Google Scholar 

  8. Dai W, Wold LE, Dow JS, Kloner RA (2005) Thickening of the infarcted wall by collagen injection improves left ventricular function in rats. J Am Coll Cardiol 46:714–719

    Article  PubMed  CAS  Google Scholar 

  9. Eaves CJ (2005) SDF-1 tells stem cells to mind their P’s and Z’s. J Clin Invest 115:27–29

    Article  PubMed  CAS  Google Scholar 

  10. Fraccarollo D, Galuppo P, Bauersachs J, Ertl G (2002) Collagen accumulation after myocardial infarction: Effects of ETA receptor blockade and implications for early remodeling. Cardiovasc Res 54:559–567

    PubMed  CAS  Google Scholar 

  11. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202

    Article  PubMed  Google Scholar 

  12. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    Article  PubMed  CAS  Google Scholar 

  13. Jugdutt BI, Joljart MJ, Khan MI (1996) Rate of collagen deposition during healing and ventricular remodeling after myocardial infarction in rat and dog models. Circulation 94:94–101

    PubMed  CAS  Google Scholar 

  14. Kastrup J, Jørgensen E, Rück A, Tägil K, Glogar D, Ruzyllo W, Bøtker HE, Dudek D, Drvota V, Hesse B, Thuesen L, Blomberg P, Gyöngyösi M, Sylvén C (2005) Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject one trial. J Am Coll Cardiol 45:982–988

    Article  PubMed  CAS  Google Scholar 

  15. Koch KC, vom Dahl J, Wenderdel M, Nowak B, Schaefer WM, Sasse A, Stellbrink C, Buell U, Hanrath P (2001) Myocardial viability assessment by endocardial electroanatomic mapping: comparison with metabolic imaging and functional recovery after coronary revascularization. J Am Coll Cardiol 38:91–98

    Article  PubMed  CAS  Google Scholar 

  16. Koch KC, Wenderdel M, Stellbrink C, Hanrath P, vom Dahl J (2001) Electromechanical assessment of left ventricular function following successful percutaneous coronary revascularization. Catheter Cardiovasc Interv 54:466–472

    PubMed  CAS  Google Scholar 

  17. Laham RJ, Simons M, Pearlman JD, Ho KKL, Baim DS (2002) Magnetic resonance imaging demonstrates improved regional systolic wall motion and thickening and myocardial perfusion of myocardial territories treated by laser myocardial revascularization. J Am Coll Cardiol 39:1–8

    PubMed  Google Scholar 

  18. Lessick J, Hayam G, Zaretsky A, Reisner SA, Schwartz Y, Ben-Haim SA (2002) Evaluation of inotropic changes in ventricular function by NOGA mapping: comparison with echocardiography. J Appl Physiol 93:418–426

    PubMed  Google Scholar 

  19. Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease. part I: angiogenic cytokines. Circulation 109:2487-2491

    PubMed  Google Scholar 

  20. Losordo DW, Dimmeler S (2004) Therapeutic angiogenesis and vasculogenesis for ischemic disease. part II: cell-based therapies. Circulation 109:2692–2697

    PubMed  Google Scholar 

  21. Ma J, Ge J, Zhang S, Sun A, Shen J, Chen L, Wang K, Zou Y (2005) Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol 100:217-223

    Article  PubMed  CAS  Google Scholar 

  22. Maekawa Y, Toshihisa A, Yoshikawa T, Sugano Y, Mahara K, Kohno T, Takahashi T, Ogawa S (2004) Effect of granulocyte-macrophage colony-stimulating factor inducer on left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 44:1510-1520

    Article  PubMed  CAS  Google Scholar 

  23. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  PubMed  CAS  Google Scholar 

  24. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  25. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Article  PubMed  CAS  Google Scholar 

  26. Perin EC, Dohmann HFR, Borojevic R, Silva SA, Sousa ALS, Mesquita CT, Rossi MID, Carvalho AC, Dutra HS, Dohmann HJF, Silva GV, Belém L, Vivacqua R, Rangel FOD, Esporcatte R, Geng YJ, Vaughn WK, Assad JAR, Mesquita ET, Willerson JT (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294-2302

    PubMed  Google Scholar 

  27. Schofield PM, Sharples LD, Caine N, Burns S, Tait S, Wistow T, Buxton M, Wallwork J (1999) Transmyocardial laser revascularisation in patients with refractory angina: a randomised controlled trial. Lancet 353:519–524

    PubMed  CAS  Google Scholar 

  28. Skyschally A, Haude M, Dörge H, Thielmann M, Duschin A, van de Sand A, Konietzka I, Büchert A, Aker S, Massoudy P, Schulz R, Erbel R, Heusch G (2004) Glucocorticoid treatment prevents progressive myocardial dysfunction resulting from experimental coronary microembolization. Circulation 109:2337–2342

    Article  PubMed  CAS  Google Scholar 

  29. Smits PC, van Langenhove G, Michael Schaar M, Reijs A, Bakker WH, van der Giessen WJ, Verdouw PD, Krenning EP, Serruys PW (2002) Efficacy of percutaneous intramyocardial injections using a nonfluoroscopic 3-D mapping based catheter system. Cardiovasc Drugs Therapy 16:527–533

    Article  CAS  Google Scholar 

  30. Tomita S, Mickle DAG, Weisel RD, Jia Z-Q, Tumiati LC, Allidina Y, Liu P, Li R-K (2002) Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 123:1132–1140

    Article  PubMed  Google Scholar 

  31. Trueblood NA, Xie Z, Communal C, Sam F, Ngoy S, Liaw L, Jenkins AW, Wang J, Sawyer DB, Bing OHL, Apstein CS, Colluci WS, Singh K (2001) Exaggerated left ventricular dilatation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88:1080–1087

    PubMed  CAS  Google Scholar 

  32. Tse H-F, Kwong Y-L, Chan JKF, Lo G, Ho C-L, Lau CP (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361:47–49

    Article  PubMed  Google Scholar 

  33. Urbich C, Dimmeler S (2004) Endothelial progenitor cells. Characterization and role in vascular biology. Circ Res 95:343–353

    Article  PubMed  CAS  Google Scholar 

  34. Yamaguchi J, Kusano KF, Masuo O, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T (2003) Stromal cell–derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1316–1322

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Christian Koch M.D..

Additional information

Drs. Koch and Schaefer contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, KC., Schaefer, W.M., Liehn, E.A. et al. Effect of catheter-based transendocardial delivery of stromal cell-derived factor 1α on left ventricular function and perfusion in a porcine model of myocardial infarction. Basic Res Cardiol 101, 69–77 (2006). https://doi.org/10.1007/s00395-005-0570-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-005-0570-3

Key words

Navigation