Skip to main content

Cardiac Physio-Pharmacological Aspects of Three Chromogranin A-Derived Peptides: Vasostatin, Catestatin, and Serpinin

  • Chapter
  • First Online:
Chromogranins: from Cell Biology to Physiology and Biomedicine

Part of the book series: UNIPA Springer Series ((USS))

  • 291 Accesses

Abstract

The discovery of a cardiac production of Chromogranin A (CgA) opened a rich field of research whose result was a cardiovascular dimension of this multifunctional protein and the fragments derived by its proteolytic cleavage. In line with its precursor function, at the cardiac level, CgA undergoes proteolytic processing. Moreover, as shown by ex vivo functional studies, it acts on the heart itself. Through the amino terminal (vasostatin: VS) and catestatin (CST) domains, CgA elicits a direct cardiodepressive, antiadrenergic and cardioprotective influence, acting as a cardiac stabilizer under normal conditions and in the presence of stress (i.e. catecholaminergic, and endothelinergic). At the same time, through the C-terminal Serpinin (Serp), CgA elicits a cardiostimulatory beta-adrenergic-like action. In this chapter, the results of more than 10 years of research will be described in order to illustrate the cardiovascular profile of these peptides, as well as their mechanisms of action. The purpose is to highlight the expanding role this protein and its fragments in the neuroendocrine circuits that finely control heart performance in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Adenylate Cyclase

Akt:

Protein Kinase B

Au:

Aurum

CA:

Catecholamine

CaM:

Calmodulin

cAMP:

Cyclic Adenosine Monophosphate

CgA:

Chromogranin A

cGMP:

Cyclic Guanosine Monophosphate

Chr:

Chromofungin

CO:

Cardiac Output

CP:

Coronary Pressure

CST:

Catestatin

ECM:

Myocardial Extracellular Matrix

EE:

Endocardial endothelium

ELISA:

Enzyme-Linked Immuno Assay

eNOS:

Endothelial Nitric Oxide Synthase

ERK1/2:

Extracellular Signal–regulated Kinase 1/2

ET-1:

Endothelin 1

GC:

Guanylate Cyclase

GPCR:

G protein-coupled receptor

GSK3β:

Glycogen Synthase Kinase 3 beta

HF:

Heart Failure

HPLC:

High-performance liquid chromatography

HR:

Heart rate

hr:

human recombinant

Hsp90:

Heat Shock Protein 90

HTR:

Half Time Relaxation

I/R:

Ischemia/Reperfusion

IGF-1:

insulin-like growth factor-1

iPLA2:

Calcium Independent Phospholipase A2

IS:

Infarct Size

ISO:

Isoproterenol

LDH:

Lactate Dehydrogenase

L-NAME:

Nω-Nitro-L-arginine methyl ester hydrochloride

LVP:

Left Ventricular Pressure

miRNA:

microRNA

mitoKATP Channel:

ATP-Sensitive Potassium Channel

nAChR:

Nicotinic Receptor

NO:

Nitric Oxide

ODQ:

1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one

PDE2:

Phosphodiesterases type 2

pGlu-Serp:

pyroglutaminated-Serpinin

PI3K:

Phosphatidylinositide 3-Kinase

PKA:

Protein Kinase A

PKG:

Protein Kinase G

PLN:

Phospholamban

PTIO:

2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide

PTX:

Pertussis Toxin

RISK:

Reperfusion Injury Signalling Kinase

ROS:

Radical Oxygen Species

RPP:

Rate Pressure Product

RyR:

Ryanodine receptor

Serp:

Serpinin

SHR:

Spontaneously Hypertensive Rats

SR:

Sarcoplasmic Reticulum

VE:

Vascular Endothelium

VS:

Vasostatin

WKY:

Wistar Kyoto

WT:

Wild-Type

β-ARs:

β-adrenergic receptors

References

  • Aardal S, Helle KB, Elsayed S, Reed RK, Serck-Hanssen G (1993) Vasostatins, comprising the N-terminal domains of chromogranin A, suppress tension in isolated human blood vessel segments. J Neuroendocrinol 5:105–112

    Article  Google Scholar 

  • Abi-Gerges N, Fischmeister R, Meiry PF (2001) G protein-mediated inhibitoryeffect of a nitric oxide donor on the L-type Ca2+ current in rat ventricularmyocytes. J Physiol 531:117–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelone T, Quintieri AM, Brar BK, Limchaiyawat PT, Tota B, Mahata SK, Cerra MC (2008) The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology 149(10):4780–4793

    Article  PubMed  PubMed Central  Google Scholar 

  • Angelone T, Quintieri AM, Pasqua T, Gentile S, Tota B, Mahata SK, Cerra MC (2012) Phosphodiesterase type-2 and NO-dependent S-nitrosylation mediate the cardioinhibition of the antihypertensive catestatin. Am J Physiol Heart Circ Physiol 302(2):H431–H442

    Article  CAS  PubMed  Google Scholar 

  • Angelone T, Quintieri AM, Pasqua T, Filice E, Cantafio P, Scavello F, Rocca C, Mahata SK, Gattuso A, Cerra MC (2015) The NO stimulator, Catestatin, improves the Frank-Starling response in normotensive and hypertensive rat hearts. Nitric Oxide 50:10–19

    Article  CAS  PubMed  Google Scholar 

  • Bartizal K, Abruzzo G, Trainor C, Krupa D, Nollstadt K, Schmatz D, Schwartz R, Hammond M, Balkovec J, Vanmiddlesworth F (1992) In vitro antifungal activities and in vivo efficacies of 1,3-beta-D-glucan synthesis inhibitors L-671,329, L-646,991, tetrahydroechinocandin B, and L-687,781, a papulacandin. Antimicrob Agents Chemother 36(8):1648–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassino E, Fornero S, Gallo MP, Ramella R, Mahata SK, Tota B, Levi R, Alloatti G (2011) A novel catestatin-induced antiadrenergic mechanism triggered by the endothelial PI3K-eNOS pathway in the myocardium. Cardiovasc Res 91(4):617–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayraktutan U, Yang ZK, Shah AM (1998) Selective dysregulation of nitric oxide synthase type 3 in cardiac myocytes but not coronary microvascular endothelial cells of spontaneously hypertensive rat. Cardiovasc Res 3:719–726

    Article  Google Scholar 

  • Bing OHL, Brooks WW, Robinson KG, Slawsky MT, Hayes JA, Litwin SE, Sen S, Conrad CH (1995) The spontaneously hypertensive rat as a model of the transition from compensated left ventricular hypertrophy to failure. J Mol Cell Cardiol 27:383–396

    Article  CAS  PubMed  Google Scholar 

  • Brekke JF, Osol GJ, Helle KB (2002) N-terminal chromogranin-derived peptides as dilators of bovine coronary resi stance arteries. Regul Pept 105:93–100

    Article  CAS  PubMed  Google Scholar 

  • Cappello S, Angelone T, Tota B, Pagliaro P, Penna C, Rastaldo R, Corti A, Losano G, Cerra MC (2007) Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism. Am J Physiol Heart Circ Physiol 293(1):H719–H727

    Article  CAS  PubMed  Google Scholar 

  • Cerra MC, De Iuri L, Angelone T, Corti A, Tota B (2006) Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res Cardiol 101(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • Cerra MC, Gallo MP, Angelone T, Quintieri AM, Pulerà E, Filice E, Guérold B, Shooshtarizadeh P, Levi R, Ramella R, Brero A, Boero O, Metz-Boutigue MH, Tota B, Alloatti G (2008) The homologous rat chromogranin A1-64 (rCGA1-64) modulates myocardial and coronary function in rat heart to counteract adrenergic stimulation indirectly via endothelium-derived nitric oxide. FASEB J 22(11):3992–4004

    Article  CAS  PubMed  Google Scholar 

  • Di Felice V, Cappello F, Montalbano A, Ardizzone N, Campanella C, De Luca A, Amelio D, Tota B, Corti A, Zummo G (2006) Human recombinant vasostatin-1 may interfere with cell-extracellular matrix interactions. Ann N Y Acad Sci 1090:305–310

    Article  PubMed  Google Scholar 

  • Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES, Zhang C (2009) MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 284:29514–29525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrero E, Scabini S, Magni E, Foglieni C, Belloni D, Colombo B, Curnis F, Villa A, Ferrero ME, Corti A (2004) Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage. FASEB J 18:554–556

    CAS  PubMed  Google Scholar 

  • Filice E, Pasqua T, Quintieri AM, Cantafio P, Scavello F, Amodio N, Cerra MC, Marban C, Schneider F, Metz-Boutigue MH, Angelone T (2015) Chromofungin, CgA47-66-derived peptide, produces basal cardiac effects and postconditioning cardioprotective action during ischemia/reperfusion injury. Peptides 71:40–48

    Article  CAS  PubMed  Google Scholar 

  • Fung MM, Salem RM, Mehtani P, Thomas B, Lu CF, Perez B, Rao F, Stridsberg M, Ziegler MG, Mahata SK, O'Connor DT (2010) Direct vasoactive effects of the Chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin Exp Hypertens 5:278–287

    Article  Google Scholar 

  • Garofalo F, Parisella ML, Amelio D, Tota B, Imbrogno S (2009) Phospholamban S-nitrosylation modulates Starling response in fish heart. Proc Biol Sci 276(1675):4043–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparri A, Sidoli A, Sanchez LP, Longhi R, Siccardi AG, Marchisio PC, Corti A (1997) Chromogranin A fragments modulate cell adhesion. Identification and characterization of a pro-adhesive domain. J Biol Chem 272(33):20835–20843

    Article  CAS  PubMed  Google Scholar 

  • Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117(21):2761–2768

    Article  CAS  PubMed  Google Scholar 

  • Hammond J, Balligand JL (2012) Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol 52:330–340

    Article  CAS  PubMed  Google Scholar 

  • Han JC, Tran K, Johnston CM, Nielsen PMF, Barrett CJ, Taberner AJ, Loiselle DS (2014) Reduced mechanical efficiency in left ventricular trabeculae of the spontaneously hypertensive rat. Physiol Rep 2:e12211

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartell NA, Archer HE, Bailey CJ (2005) Insulin-stimulated endothelial nitric oxide release is calcium independent and mediated via protein kinase B. Biochem Pharmacol 69(5):781–790

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14(5):893–907

    Article  CAS  PubMed  Google Scholar 

  • Helle KB, Corti A, Metz-Boutigue MH, Tota B (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64(22):2863–2886

    Article  CAS  PubMed  Google Scholar 

  • Hove-Madsen L, Méry PF, Jurevicius J, Skeberdis AV, Fischmeister R (1996) Regulation of myocardial calcium channels by cyclic AMP metabolism. Basic Res Cardiol 91(Suppl 2):1–8. Review

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Loh YP (2006) Protease nexin-1 promotes secretory granule biogenesis by preventing granule protein degradation. Mol Biol Cell 17(2):789–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshimizu H, Kim T, Cawley NX, Loh YP (2010) Chromogranin A: a new proposal for trafficking, processing and induction of granule biogenesis. Regul Pept 160(1-3):153–159

    Article  CAS  PubMed  Google Scholar 

  • Koshimizu H, Cawley NX, Kim T, Yergey AL, Loh YP (2011a) Serpinin: a novel chromogranin A-derived, secreted peptide up-regulates protease nexin-1 expression and granule biogenesis in endocrine cells. Mol Endocrinol 25(5):732–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshimizu H, Cawley NX, Yergy AL, Loh YP (2011b) Role of pGlu-serpinin, a novel chromogranin A-derived peptide in inhibition of cell death. J Mol Neurosci 45(2):294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugardon K, Chasserot-Golaz S, Kieffer AE, Maget-Dana R, Nullans G, Kieffer B, Aunis D, Metz-Boutigue MH (2001) Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47–66)-derived peptide. J Biol Chem 276(38):35875–35882

    Article  CAS  PubMed  Google Scholar 

  • Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ (1997) Novel autoendocrine feedback control of catecholamine release. A discrete chromogranin A fragment is a non competitive nicotinic cholinergic antagonist. J Clin Invest 100:1623–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahata SK, Mahata M, Fung MM, O'Connor DT (2010) Catestatin: a multifunctional peptide from chromogranin A. Regul Pept 162(1-3):33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandalà M, Brekke JF, Serck-Hanssen G, Metz-Boutigue MH, Helle KB (2005) Chromogranin A-derived peptides: interaction with the rat posterior cerebral artery. Regul Pept 124(1-3):73–80

    Article  PubMed  Google Scholar 

  • Maniatis NA, Brovkovych V, Allen SE, John TA, Shajahan AN, Tiruppathi C, Vogel SM, Skidgel RA, Malik AB, Minshall RD (2006) Novel mechanism of endothelial nitric oxide synthase activation mediated by caveolae internalization in endothelial cells. Circ Res 99(8):870–877

    Article  CAS  PubMed  Google Scholar 

  • Matsuda N, Jesmin S, Takahashi Y, Hatta E, Kobayashi M, Matsuyama K, Kawakami N, Sakuma I, Gando S, Fukui H, Hattori Y, Levi R (2004) Histamine H1 and H2 receptor gene and protein levels are differentially expressed in the hearts of rodents and humans. J Pharmacol Exp Ther 309(2):786–795

    Article  CAS  PubMed  Google Scholar 

  • Mattiazzi A, Vittone L, Mundiña-Weilenmann C (2007) Ca2+/calmodulin-dependent protein kinase: a key component in the contractile recovery from acidosis. Cardiovasc Res 73(4):648–656

    Article  CAS  PubMed  Google Scholar 

  • Mazza R, Pasqua T, Gattuso A (2012) Cardiac heterometric response: the interplay between Catestatin and nitric oxide deciphered by the frog heart. Nitric Oxide 27(1):40–49

    Article  CAS  PubMed  Google Scholar 

  • Metz-Boutigue MH, Garcia-Sablone P, Hogue-Angeletti R, Aunis D (1993) Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem 217(1):247–257

    Article  CAS  PubMed  Google Scholar 

  • Metz-Boutigue MH, Goumon Y, Lugardon K, Strub JM, Aunis D (1998) Antibacterial peptides are present in chromaffin cell secretory granules. Cell Mol Neurobiol 18(2):249–266

    Article  CAS  PubMed  Google Scholar 

  • Metz-Boutigue MH, Kieffer AE, Goumon Y, Aunis D (2003) Innate immunity: involvement of new neuropeptides. Trends Microbiol 11(12):585–592

    Article  CAS  PubMed  Google Scholar 

  • Ozawa K, Whalen EJ, Nelson CD, Mu Y, Hess DT, Lefkowitz RJ, Stamler JS (2008) S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell 3:395–405

    Article  Google Scholar 

  • Pasqua T, Corti A, Gentile S, Pochini L, Bianco M, Metz-Boutigue MH, Cerra MC, Tota B, Angelone T (2013) Full-length human chromogranin-A cardioactivity: myocardial, coronary, and stimulus-induced processing evidence in normotensive and hypertensive male rat hearts. Endocrinology 154(9):3353–3365

    Article  PubMed  Google Scholar 

  • Pasqua T, Tota B, Penna C, Corti A, Cerra MC, Loh YP, Angelone T (2015) pGlu-serpinin protects the normotensive and hypertensive heart from ischemic injury. J Endocrinol 227(3):167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penna C, Cappello S, Mancardi D, Raimondo S, Rastaldo R, Gattullo D, Losano G, Pagliaro P (2006) Post-conditioning reduces infarct size in the isolated rat heart: role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol 101(2):168–179

    Article  CAS  PubMed  Google Scholar 

  • Penna C, Mognetti B, Tullio F, Gattullo D, Mancardi D, Pagliaro P, Alloatti G (2008) The platelet activating factor triggers preconditioning-like cardioprotective effect via mitochondrial K-ATP channels and redox-sensible signaling. J Physiol Pharmacol 59:47–54

    CAS  PubMed  Google Scholar 

  • Penna C, Alloatti G, Gallo MP, Cerra MC, Levi R, Tullio F, Bassino E, Dolgetta S, Mahata SK, Tota B, Pagliaro P (2010) Catestatin improves post-ischemic left ventricular function and decreases ischemia/reperfusion injury in heart. Cell Mol Neurobiol 30(8):1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrelli MG, Tullio F, Angotti C, Cerra MC, Angelone T, Tota B, Alloatti G, Penna C, Pagliaro P (2013) Catestatin reduces myocardial ischaemia/reperfusion injury: involvement of PI3K/Akt, PKCs, mitochondrial KATP channels and ROS signaling. Pflugers Arch 465(7):1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Petroff MG, Kim SH, Pepe S, Dessy C, Marbán E, Balligand JL, Sollott SJ (2010) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3(10):867–873

    Article  Google Scholar 

  • Pieroni M, Corti A, Tota B, Curnis F, Angelone T, Colombo B, Cerra MC, Bellocci F, Crea F, Maseri A (2007) Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J 28(9):1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Prendergast BD, Sagach VF, Shah AM (1997) Basal release of nitric oxide augments the Frank-Starling response in the isolated heart. Circulation 96(4):1320–1329

    Article  CAS  PubMed  Google Scholar 

  • Ramella R, Boero O, Alloatti G, Angelone T, Levi R, Gallo MP (2010) Vasostatin 1 activates eNOS in endothelial cells through a proteoglycan-dependent mechanism. J Cell Biochem 110(1):70–79

    CAS  PubMed  Google Scholar 

  • Reddy LG, Shi Y, Kutchai H, Filoteo AG, Penniston JT, Thomas DD (1999) An autoinhibitory peptide from the erythrocyte Ca-ATPase aggregates and inhibits both muscle Ca-ATPase isoforms. Biophys J 76(6):3058–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh K, Matsu-Ura T, Enomoto M, Nakamura H, Michikawa T, Mikoshiba K (2011) Highly cooperative dependence of sarco/endoplasmic reticulum calcium ATPase(SERCA) 2a pump activity on cytosolic calcium in living cells. J Biol Chem 286:20591–20599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt AG, Edes I, Kranias EG (2001) Phospholamban: a promising therapeutic target in heart failure? Cardiovasc Drugs Ther 15(5):387–396

    Article  CAS  PubMed  Google Scholar 

  • Schneider F, Bach C, Chung H, Crippa L, Lavaux T, Bollaert PE, Wolff M, Corti A, Launoy A, Delabranche X, Lavigne T, Meyer N, Garnero P, Metz-Boutigue MH (2012) Vasostatin-I, a chromogranin A-derived peptide, in non-selected critically ill patients: distribution, kinetics, and prognostic significance. Intensive Care Med 38(9):1514–1522

    Article  CAS  PubMed  Google Scholar 

  • Shaul PW, Afshar S, Gibson LL, Sherman TS, Kerecman JD, Grubb PH, Yoder BA, McCurnin DC (2002) Developmental changes in nitric oxide synthase isoform expression and nitric oxide production in fetal baboon lung. Am J Physiol Lung Cell Mol Physiol 283(6):L1192–L1199

    Article  CAS  PubMed  Google Scholar 

  • Stavrakis S, Scherlag BJ, Fan Y, Liu Y, Liu Q, Mao J, Cai H, Lazzara R, Po SS (2012) Antiarrhythmic effects of vasostatin-1 in a canine model of atrial fibrillation. J Cardiovasc Electrophysiol 23(7):771–777

    Article  PubMed  Google Scholar 

  • Tota B, Mazza R, Angelone T, Nullans G, Metz-Boutigue MH, Aunis D, Helle KB (2003) Peptides from the N-terminal domain of chromogranin A (vasostatins) exert negative inotropic effects in the isolated frog heart. Regul Pept 114(2–3):123–130

    Article  CAS  PubMed  Google Scholar 

  • Tota B, Quintieri AM, Di Felice V, Cerra MC (2007) New biological aspects of chromogranin A-derived peptides: focus on vasostatins. Comp Biochem Physiol A Mol Integr Physiol 147(1):11–18

    Article  PubMed  Google Scholar 

  • Tota B, Angelone T, Mazza R, Cerra MC (2008) The chromogranin A-derived vasostatins: new players in the endocrine heart. Curr Med Chem 15(14):1444–1451

    Google Scholar 

  • Tota B, Gentile S, Pasqua T, Bassino E, Koshimizu H, Cawley NX, Cerra MC, Loh YP, Angelone T (2012) The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac β-adrenergic-like inotropes. FASEB J 26(7):2888–2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tota B, Angelone T, Cerra MC (2014) The surging role of Chromogranin A in cardiovascular homeostasis. Front Chem 2:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsigelny IF, Kouznetsova VL, Biswas N, Mahata SK, O'Connor DT (2013) Development of a pharmacophore model for the catecholamine release-inhibitory peptide catestatin: virtual screening and functional testing identify novel small molecule therapeutics of hypertension. Bioorg Med Chem 21(18):5855–5869

    Article  CAS  PubMed  Google Scholar 

  • Vinten-Johansen J, Zhao ZQ, Jiang R, Zatta AJ (2005) Myocardial protection in reperfusion with postconditioning. Expert Rev Cardiovasc Ther 3(6):1035–1045

    Article  PubMed  Google Scholar 

  • Xiao RP, Cheng H, Zhou YY, Kuschel M, Lakatta EG (1999) Recent advances in cardiac beta(2)-adrenergic signal transduction. Circ Res 11:1092–1100

    Article  Google Scholar 

  • Yano N, Ianus V, Zhao TC, Tseng A, Padbury JF, Tseng YT (2007) A novel signaling pathway for beta-adrenergic receptor-mediated activation of phosphoinositide 3-kinase in H9c2 cardiomyocytes. Am J Physiol Heart Circ Physiol 1:H385–H393

    Article  Google Scholar 

  • Zhang C (2008) MicroRNAs: role in cardiovascular biology and disease. Clin Sci 114(12):699–706

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Zhang MH, Sears CE, Emanuel K, Redwood C, ElArmouche A, Kranias EG, Casadei B (2008) Reduced phospholamban phosphorylation is associated with impaired relaxation in left ventricular myocytes from neuronal NO synthase decient mice. Circ Res 102:242–249

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Shooshtarizadeh P, Laventie BJ, Colin DA, Chich JF, Vidic J, de Barry J, Chasserot-Golaz S, Delalande F, Van Dorsselaer A, Schneider F, Helle K, Aunis D, Prévost G, Metz-Boutigue MH (2009) Two chromogranin a-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS One 4(2):e4501

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Angelone PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angelone, T., Tota, B., Cerra, M.C. (2017). Cardiac Physio-Pharmacological Aspects of Three Chromogranin A-Derived Peptides: Vasostatin, Catestatin, and Serpinin. In: Angelone, T., Cerra, M., Tota, B. (eds) Chromogranins: from Cell Biology to Physiology and Biomedicine. UNIPA Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-58338-9_8

Download citation

Publish with us

Policies and ethics