Skip to main content
Log in

Beta-adrenoceptor subtype dependence of chronotropy in mouse embryonic stem cell-derived cardiomyocytes

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract.

Cardiomyocytes derived from embryonic stem cells (ESCM) have potential both as an experimental model for investigating cardiac physiology and as a source for tissue repair. For both reasons it is important to characterise the responses of these cells, and one of the key modulators of contraction is the β-adrenergic system. We therefore undertook a detailed study of the response of the spontaneous beating rate of ESCM to β-adrenoceptor (βAR) stimulation. Embryoid bodies (EBs) were generated from murine ES line E14Tg2a by the hanging drop method, followed by plating. Spontaneously beating areas were seen starting from 9–14 days after differentiation: the experiments described here were performed on EBs between developmental day 19 and 48. Beating cell layers were seeded with charcoal to allow tracking of movement by a video-edge detection system. Experiments were performed in physiological medium containing 1 mM Ca2+ at 37 °C. Isoprenaline (Iso) increased beating rate with an EC50 value of 52 nM. Iso (0.3 µM) increased basal rate from 67 ± 7 beats per minute (bpm) to 138 ± 18 bpm, P < 0.001, n = 22. At earlier developmental time points the response to Iso was not maintained through 5 min exposure; this spontaneous desensitisation only being observed before day 36. A repeat application of Iso after a wash period of 20 min produced reproducible effects on beating rate. Subtype dependence of the βAR response was determined by comparing an initial response with a second in the presence of selective β1- or β2AR antagonists. In the presence of the specific β1AR-blocker CGP 20712A (300 nM) the increase in rate with Iso was reduced from 207 ± 42% of basal to 128 ± 13%, P < 0.01. With the β2AR-blocker ICI 118,551 (50 nM) there was no significant change in Iso response. Exposure to the muscarinic agonist, carbachol (10 µM), inhibited the increase in frequency mediated by isoprenaline, but had mixed stimulatory and inhibitory effects on basal rate. This study extends the characterisation of ESCM as a preparation for studying receptor pharmacology, and indicates that the β1AR is the predominant subtype mediating increases in contraction rate in murine ESCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  CAS  PubMed  Google Scholar 

  2. Belevych AE, Sims C, Harvey RD (2001) ACh-induced rebound stimulation of L-type Ca(2+) current in guinea-pig ventricular myocytes, mediated by Gbetagamma-dependent activation of adenylyl cyclase. J of Physiol 536:677–692

    Article  CAS  Google Scholar 

  3. Brown AM, Yatani A, Imoto Y, Codina J, Mattera R, Birnbaumer L (1989) Direct G-protein regulation of Ca2+ channels. Ann N Y Acad Sci 560:373–386

    CAS  PubMed  Google Scholar 

  4. Callaerts-Vegh Z, Evans KL, Shipley GL, Davies PJ, Cuba DL, Gurji HA, Giles H, Bond RA (2003) Effects of different beta adrenoceptor ligands in mice with permanent occlusion of the left anterior descending coronary artery. Br J Pharmacol 138:1505–1516

    Article  CAS  PubMed  Google Scholar 

  5. Chaudhri B, del Monte F, Hajjar RJ, Harding SE (2003) Contractile effects of adenovirally-mediated increases in SERCA2a activity: a comparison between adult rat and rabbit ventricular myocytes. Mol Cell Biochem 251:103–109

    Article  CAS  PubMed  Google Scholar 

  6. Cohn JN (1989) The sympathetic nervous system in heart failure. J Cardiovasc Pharmacol 14:57–61

    Google Scholar 

  7. Communal C, Singh K, Sawyer DB, Colucci WS (1999) Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 100 (22):2210–2212

    CAS  PubMed  Google Scholar 

  8. del Monte F, Kaumann AJ, Poole-Wilson PA, Wynne DG, Harding SE (1993) Coexistence of functioning β1- and β2-adrenoceptors in single myocytes from human ventricle. Circulation 88:854–863

    CAS  PubMed  Google Scholar 

  9. Engelhardt S, Boknik P, Keller U, Neumann J, Lohse MJ, Hein L (2001) Early impairment of calcium handling and altered expression of junction in hearts of mice overexpressing the beta1-adrenergic receptor. FASEB J 15:2718–2720

    CAS  PubMed  Google Scholar 

  10. Freestone NS, Heubach JF, Wettwer E, Ravens U, Brown D, Kaumann AJ (1999) Beta4-adrenoceptors are more effective than beta1-adrenoceptors in mediating arrhythmic Ca2+ transients in mouse ventricular myocytes. N S Arch Pharmacol 360 (4):445–456

    Article  CAS  Google Scholar 

  11. Gao M, Ping P, Post S, Insel PA, Tang R, Hammond HK (1998) Increased expression of adenylylcyclase type VI proportionately increases beta-adrenergic receptor-stimulated production of cAMP in neonatal rat cardiac myocytes. Proc Natl Acad Sci USA 95:1038–1043

    Article  CAS  PubMed  Google Scholar 

  12. Gong H, Adamson DL, Ranu HK, Koch WJ, Heubach JF, Ravens U, Zolk O, Harding SE (2000) The effect of Gi-protein inactivation on basal, β1- and β2AR-stimulated contraction of myocytes from trangenic mice overexpressing the β2-adrenoceptor. Br J Pharmacol 131:594–600.

    CAS  PubMed  Google Scholar 

  13. Harvey RD, Belevych AE (2003) Muscarinic regulation of cardiac ion channels. Br J Pharmacol 139:1074–1084

    Article  CAS  PubMed  Google Scholar 

  14. Hescheler J, Fleischmann BK, Lentini S, Maltsev VA, Rohwedel J, Wobus AM, Addicks K (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc Res 36:149–162

    Article  CAS  PubMed  Google Scholar 

  15. Hogan B, Beddington R, Constantini F and Lacy E (1994) Isolation, culture and manipulation of embryonic stem cells. Manipulating the mouse embryo, pp 255–290. Cold Spring Harbor Press

  16. Hooper M, Hardy K, Handyside A, Hunter S, Monk M (1987) HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326:292–295

    Article  CAS  PubMed  Google Scholar 

  17. Hopwood AM, Harding SE, Harris P (1987) Pertussis toxin reduces the antiadrenergic effect of 2-chloroadenosine on papillary muscle and the direct negative inotropic effect of 2-chloroadenosine on atrium. Eur J Pharmacol 141:423–428

    Article  CAS  PubMed  Google Scholar 

  18. Kaumann AJ, Engelhardt S, Hein L, Molenaar P, Lohse M (2001) Abolition of (-)-CGP 12177-evoked cardiostimulation in double beta1/beta2-adrenoceptor knockout mice. Obligatory role of beta1-adrenoceptors for putative beta4-adrenoceptor pharmacology. N S Arch Pharmacol 363:87–93

    Article  CAS  Google Scholar 

  19. Kiss E, Edes I, Sato Y, Luo W, Liggett SB, Kranias EG (1997) Beta-adrenergic regulation of cAMP and protein phosphorylation in phospholamban-knockout mouse hearts. Am J Physiol 272:H785–H790

    CAS  PubMed  Google Scholar 

  20. Kuschel M, Zhou YY, Cheng H, Zhang SJ, Chen Y, Lakatta EG, Xiao RP (1999) G(i) protein-mediated functional compartmentalization of cardiac beta(2)-adrenergic signaling. J Biol Chem 274:22048–22052

    Article  CAS  PubMed  Google Scholar 

  21. Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S (2003) Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 100:7808–7811

    Article  CAS  PubMed  Google Scholar 

  22. Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93:896–906

    Article  CAS  PubMed  Google Scholar 

  23. Malan D, Ji GJ, Schmidt A, Addicks K, Hescheler J, Levi RC, Bloch W, Fleischmann BK (2004) Nitric oxide, a key signaling molecule in the murine early embryonic heart. FASEB J 18:1108–1110

    CAS  PubMed  Google Scholar 

  24. Maltsev VA, Ji GJ, Wobus AM, Fleischmann BK, Hescheler J (1999) Establishment of beta-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development. Circ Res 84:136–145

    CAS  PubMed  Google Scholar 

  25. Marx SO, Kurokawa J, Reiken S, Motoike H, D’Armiento J, Marks AR, Kass RS (2001) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 295:496–499

    Google Scholar 

  26. Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083

    Article  PubMed  Google Scholar 

  27. Mubagwa K, Gilbert JC, Pappano AJ (1994) Differential time course for desensitization to muscarinic effects on K+ and Ca2+ channels. Pflugers Arch 428:542–551

    CAS  PubMed  Google Scholar 

  28. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  CAS  PubMed  Google Scholar 

  29. Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, Komajda M, Lubsen J, Lutiger B, Metra M, Remme WJ, Torp-Pedersen C, Scherhag A, Skene A (2003) Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 362:7–13

    Article  CAS  PubMed  Google Scholar 

  30. Porter GA Jr, Rivkees SA (2001) Ontogeny of humoral heart rate regulation in the embryonic mouse. Am J Physiol Regul Integr Comp Physiol 281:R401–R407

    CAS  PubMed  Google Scholar 

  31. Rohrer DK, Desai KH, Jasper JR, Stevens ME, Regula DP Jr, Barsh GS, Bernstein D, Kobilka BK (1996) Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci USA 93:7375–7380

    Article  CAS  PubMed  Google Scholar 

  32. Rybin VO, Pak E, Alcott S, Steinberg SF (2003) Developmental changes in beta2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. Mol Pharmacol 63:1338–1348

    Article  CAS  PubMed  Google Scholar 

  33. Sachinidis A, Fleischmann BK, Kolossov E, Wartenberg M, Sauer H, Hescheler J (2003) Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc Res 58:278–291

    Article  CAS  PubMed  Google Scholar 

  34. Sato M, Gong H, Terracciano CMN, Ranu HK, Harding SE (2004) Loss of beta-adrenoceptor response in myocytes overexpressing the Na+/Ca2+-exchanger. J Mol Cell Cardiol 36:43–48

    Article  CAS  PubMed  Google Scholar 

  35. Schubert B, VanDongen AM, Kirsch GE, Brown AM (1989) Beta-adrenergic inhibition of cardiac sodium channels by dual G-protein pathways. Science 245:516–519

    Google Scholar 

  36. Siedner S, Kruger M, Schroeter M, Metzler D, Roell W, Fleischmann BK, Hescheler J, Pfitzer G, Stehle R (2003) Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J Physiol 548:493–505

    Google Scholar 

  37. Song G, Harding SE, Duchen MR, Tunwell R, O’Gara P, Hawkins TE, Moss SE (2002) Altered mechanical properties and intracellular calcium signaling in cardiomyocytes from annexin 6 null-mutant mice. FASEB J 16:622–624

    CAS  PubMed  Google Scholar 

  38. Ungureanu-Longrois D, Balligand JL, Simmons WW, Okada I, Kobzik L, Lowenstein CJ, Kunkel SL, Michel T, Kelly RA, Smith TW (1995) Induction of nitric oxide synthase activity by cytokines in ventricular myocytes is necessary but not sufficient to decrease contractile responsiveness to beta-adrenergic agonists. Circ Res 77:494–502

    CAS  PubMed  Google Scholar 

  39. Wheatley AM, Thandroyen FT, Opie LH (1985) Catecholamine-induced myocardial cell damage: catecholamines or adrenochrome. J Mol Cell Cardiol 17:349–359

    CAS  PubMed  Google Scholar 

  40. Wobus AM (2001) Potential of embryonic stem cells. Mol Aspects Med 22:149–164

    Article  CAS  PubMed  Google Scholar 

  41. Wobus AM, Guan K, Yang HT, Boheler KR (2002) Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol Biol 185:127–156

    CAS  PubMed  Google Scholar 

  42. Wobus AM, Wallukat G, Hescheler J (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48:173–182

    CAS  PubMed  Google Scholar 

  43. Xiang Y, Kobilka BK (2003) Myocyte adrenoceptor signaling pathways. Science 300:1530–1532

    Google Scholar 

  44. Xiao R-P, Lakatta EG (1993) β1-adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+ and Ca2+ current in single rat ventricular cells. Circ Res 73:286–300

    CAS  PubMed  Google Scholar 

  45. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 98:1607–1612

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Harding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, N.N., Xu, X., Brito-Martins, M. et al. Beta-adrenoceptor subtype dependence of chronotropy in mouse embryonic stem cell-derived cardiomyocytes. Basic Res Cardiol 99, 382–391 (2004). https://doi.org/10.1007/s00395-004-0484-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-004-0484-5

Key words

Navigation