Skip to main content

Advertisement

Log in

Ferulic acid improves intestinal barrier function through altering gut microbiota composition in high-fat diet-induced mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

A high-fat diet (HFD) induces gut microbiota (GM) disorders, leading to intestinal barrier dysfunction and inflammation. Ferulic acid (FA) has shown anti-obesity effects, e.g., reducing body weight and food intake. However, the mechanism linking the anti-obesity effects of FA and GM modulation remains obscure. The present study aimed to clarify the mechanism underlying the anti-obesity effects of FA and modulation of the GM.

Methods

C57BL/6 J mice were fed by a low-fat diet (LFD) and HFD with or without FA at a dose of 100 mg/kg of body weight by oral gavage for 12 weeks. Using high-throughput sequencing, gas chromatography, real-time fluorescence quantitative PCR and immunohistochemical staining, the attenuation of obesity by FA were assessed via intestinal barrier integrity, inflammation, and the GM.

Results

FA reduced weight gain, improved HFD-induced GM imbalance, significantly enhanced intestinal short-chain fatty acid (SCFA)-producing bacteria (e.g., Olsenella, Eisenbergiella, Dubosiella, Clostridiales_unclassified, and Faecalibaculum) along with SCFA accumulation and its receptors’ expression, decreased endotoxin-producing bacteria or obesity-related bacterial genera, and serum endotoxin (lipopolysaccharides), and inhibited the colonic TLR4/NF-κB pathway. Thus, FA can mitigate colonic barrier dysfunction and intestinal inflammation, induce the production of SCFAs and inhibit endotoxins by modulating the GM.

Conclusion

These results indicate that enhancement of intestinal barrier by altering the GM may be an anti-obesity target of FA and that FA can be used as a functional compound with great developmental values.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

FA:

Ferulic acid

GM:

Gut microbiota

HFD:

High-fat diet

IECs:

Intestinal epithelial cells

LEfSe:

Linear discriminant analysis effect size analysis

LPS:

Lipopolysaccharide

NF-κB:

Nuclear factor Kappa-B

OTUs:

Operational taxonomic units

SCFA:

Short-chain fatty acid

TJs:

Tight junctions

References

  1. Gao X, Chang S, Liu S, Peng L, Xie J, Dong W, Tian Y, Sheng J (2020) Correlations between α-linolenic acid-improved multitissue homeostasis and gut microbiota in mice fed a high-fat diet. mSystems 5:e00391-e1320. https://doi.org/10.1128/mSystems.00391-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y (2018) Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 9:397–403. https://doi.org/10.1007/s13238-018-0546-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Miyamoto J, Igarashi M, Watanabe K, Karaki S-i, Mukouyama H, Kishino S, Li X, Ichimura A, Irie J, Sugimoto Y, Mizutani T, Sugawara T, Miki T, Ogawa J, Drucker DJ, Arita M, Itoh H, Kimura I (2019) Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat Commun 10:4007. https://doi.org/10.1038/s41467-019-11978-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dalby MJ, Ross AW, Walker AW, Morgan PJ (2017) Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice. Cell Rep 21:1521–1533. https://doi.org/10.1016/j.celrep.2017.10.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S (2020) Negative effects of a high-fat diet on intestinal permeability: a review. Adv Nutr 11:77–91. https://doi.org/10.1093/advances/nmz061

    Article  PubMed  Google Scholar 

  6. Dao MC, Clément K (2018) Gut microbiota and obesity: concepts relevant to clinical care. Eur J Intern Med 48:18–24. https://doi.org/10.1016/j.ejim.2017.10.005

    Article  PubMed  Google Scholar 

  7. Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93. https://doi.org/10.1016/j.btre.2014.09.002

    Article  CAS  Google Scholar 

  8. Byrd AL, Liu M, Fujimura KE, Lyalina S, Nagarkar DR, Charbit B, Bergstedt J, Patin E, Harrison OJ, Quintana-Murci L, Mellman I, Duffy D, Albert ML, Consortium tMI (2020) Gut microbiome stability and dynamics in healthy donors and patients with non-gastrointestinal cancers. J Exp Med. https://doi.org/10.1084/jem.20200606

    Article  Google Scholar 

  9. Wang W, Pan Y, Wang L, Zhou H, Song G, Wang Y, Liu J, Li A (2019) Optimal dietary ferulic acid for suppressing the obesity-related disorders in leptin-deficient obese C57BL/6J-ob/ob mice. J Agric Food Chem 67:4250–4258. https://doi.org/10.1021/acs.jafc.8b06760

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109:691–702. https://doi.org/10.1016/j.foodchem.2008.02.039

    Article  CAS  PubMed  Google Scholar 

  11. Mancuso C, Santangelo R (2014) Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol 65:185–195. https://doi.org/10.1016/j.fct.2013.12.024

    Article  CAS  PubMed  Google Scholar 

  12. Luna-Vital D, Luzardo-Ocampo I, Cuellar-Nuñez ML, Loarca-Piña G, Gonzalez de Mejia E (2020) Maize extract rich in ferulic acid and anthocyanins prevents high-fat-induced obesity in mice by modulating SIRT1, AMPK and IL-6 associated metabolic and inflammatory pathways. J Nutr Biochem 79:108343. https://doi.org/10.1016/j.jnutbio.2020.108343

    Article  CAS  PubMed  Google Scholar 

  13. Naowaboot J, Piyabhan P, Munkong N, Parklak W, Pannangpetch P (2016) Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clin Exp Pharmacol Physiol 43:242–250. https://doi.org/10.1111/1440-1681.12514

    Article  CAS  PubMed  Google Scholar 

  14. Salazar-López NJ, Astiazarán-García H, González-Aguilar GA, Loarca-Piña G, Ezquerra-Brauer J-M, Domínguez Avila JA, Robles-Sánchez M (2017) Ferulic acid on glucose dysregulation, dyslipidemia, and inflammation in diet-induced obese rats: an integrated study. Nutrients 9:675. https://doi.org/10.3390/nu9070675

    Article  CAS  PubMed Central  Google Scholar 

  15. Song Y, Wu M-s, Tao G, Lu M-w, Lin J, Huang J-q (2020) Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Res Int 137:109410. https://doi.org/10.1016/j.foodres.2020.109410

    Article  CAS  PubMed  Google Scholar 

  16. Tian B, Zhao J, Zhang M, Chen Z, Ma Q, Liu H, Nie C, Zhang Z, An W, Li J (2021) Lycium ruthenicum anthocyanins attenuate high-fat diet-induced colonic barrier dysfunction and inflammation in mice by modulating the gut microbiota. Mol Nutr Food Res 65:2000745. https://doi.org/10.1002/mnfr.202000745

    Article  CAS  Google Scholar 

  17. Tian B, Geng Y, Xu T, Zou X, Mao R, Pi X, Wu W, Huang L, Yang K, Zeng X, Sun P (2022) Digestive characteristics of Hericium erinaceus polysaccharides and their positive effects on fecal microbiota of male and female volunteers during in vitro fermentation. Front Nutr. https://doi.org/10.3389/fnut.2022.858585

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao B, Xia B, Li X, Zhang L, Liu X, Shi R, Kou R, Liu Z, Liu X (2020) Sesamol supplementation attenuates DSS-induced colitis via mediating gut barrier integrity, inflammatory responses, and reshaping gut microbiome. J Agric Food Chem 68:10697–10708. https://doi.org/10.1021/acs.jafc.0c04370

    Article  CAS  PubMed  Google Scholar 

  19. Tian B, Liu M, An W, Yu L, Zhang J, Liu Y, Zhao J, Li J (2020) Lycium barbarum relieves gut microbiota dysbiosis and improves colonic barrier function in mice following antibiotic perturbation. J Funct Foods 71:103973. https://doi.org/10.1016/j.jff.2020.103973

    Article  CAS  Google Scholar 

  20. Poquet L, Clifford MN, Williamson G (2008) Transport and metabolism of ferulic acid through the colonic epithelium. Drug Metab Dispos 36:190–197. https://doi.org/10.1124/dmd.107.017558

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Z, Egashira Y, Sanada H (2003) Digestion and absorption of ferulic acid sugar esters in rat gastrointestinal tract. J Agric Food Chem 51:5534–5539. https://doi.org/10.1021/jf034455u

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Z, Yang P, Zhao J (2022) Ferulic acid mediates prebiotic responses of cereal-derived arabinoxylans on host health. Anim Nutr 9:31–38. https://doi.org/10.1016/j.aninu.2021.08.004

    Article  CAS  PubMed  Google Scholar 

  23. Vitaglione P, Mennella I, Ferracane R, Rivellese AA, Giacco R, Ercolini D, Gibbons SM, La Storia A, Gilbert JA, Jonnalagadda S, Thielecke F, Gallo MA, Scalfi L, Fogliano V (2015) Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am J Clin Nutr 101:251–261. https://doi.org/10.3945/ajcn.114.088120

    Article  CAS  PubMed  Google Scholar 

  24. Ma Y, Chen K, Lv L, Wu S, Guo Z (2019) Ferulic acid ameliorates nonalcoholic fatty liver disease and modulates the gut microbiota composition in high-fat diet fed ApoE−/− mice. Biomed pharmacother 113:108753–108753. https://doi.org/10.1016/j.biopha.2019.108753

    Article  CAS  PubMed  Google Scholar 

  25. Ohwada K (1992) Body surface area of the golden Syrian hamster. Exp Anim 41:221–224. https://doi.org/10.1538/expanim1978.41.2_221

    Article  CAS  Google Scholar 

  26. Reid G, Abrahamsson T, Bailey M, Bindels LB, Bubnov R, Ganguli K, Martoni C, O’Neill C, Savignac HM, Stanton C, Ship N, Surette M, Tuohy K, van Hemert S (2017) How do probiotics and prebiotics function at distant sites? Benefic Microbes 8:521–533. https://doi.org/10.3920/bm2016.0222

    Article  CAS  Google Scholar 

  27. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Spivak MY (2018) Specific properties of probiotic strains: relevance and benefits for the host. EPMA J 9:205–223. https://doi.org/10.1007/s13167-018-0132-z

    Article  PubMed  PubMed Central  Google Scholar 

  28. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto J-M, Kennedy S (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541. https://doi.org/10.1038/nature12506

    Article  CAS  PubMed  Google Scholar 

  29. Yan S, Shi R, Li L, Ma S, Zhang H, Ye J, Wang J, Pan J, Wang Q, Jin X, Liu X, Liu Z (2019) Mannan oligosaccharide suppresses lipid accumulation and appetite in western-diet-induced obese mice via reshaping gut microbiome and enhancing short-chain fatty acids production. Mol Nutr Food Res 63:1900521. https://doi.org/10.1002/mnfr.201900521

    Article  CAS  Google Scholar 

  30. Bagarolli RA, Tobar N, Oliveira AG, Araújo TG, Carvalho BM, Rocha GZ, Vecina JF, Calisto K, Guadagnini D, Prada PO (2017) Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem 50:16–25. https://doi.org/10.1016/j.jnutbio.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  31. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, Balamurugan R (2020) The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. https://doi.org/10.3390/nu12051474

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mao B, Li D, Zhao J, Liu X, Gu Z, Chen YQ, Zhang H, Chen W (2015) Metagenomic insights into the effects of fructo-oligosaccharides (FOS) on the composition of fecal microbiota in mice. J Agric Food Chem 63:856–863. https://doi.org/10.1021/jf505156h

    Article  CAS  PubMed  Google Scholar 

  33. Amir I, Bouvet P, Legeay C, Gophna U, Weinberger A (2014) Eisenbergiella tayi gen. nov., sp. nov., isolated from human blood. Int J Syst Evol Microbiol 64:907–914. https://doi.org/10.1099/ijs.0.057331-0

    Article  CAS  PubMed  Google Scholar 

  34. Guo W-L, Guo J-B, Liu B-Y, Lu J-Q, Chen M, Liu B, Bai W-D, Rao P-F, Ni L, Lv X-C (2020) Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet. Food Funct 11:6818–6833. https://doi.org/10.1039/D0FO00436G

    Article  CAS  PubMed  Google Scholar 

  35. Li L-L, Wang Y-T, Zhu L-M, Liu Z-Y, Ye C-Q, Qin S (2020) Inulin with different degrees of polymerization protects against diet-induced endotoxemia and inflammation in association with gut microbiota regulation in mice. Sci Rep 10:978. https://doi.org/10.1038/s41598-020-58048-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kameyama K, Itoh K (2014) Intestinal colonization by a Lachnospiraceae Bacterium contributes to the development of diabetes in obese mice. Microbes Environ 29:427–430. https://doi.org/10.1264/jsme2.ME14054

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang P, Gao J, Ke W, Wang J, Li D, Liu R, Jia Y, Wang X, Chen X, Chen F, Hu X (2020) Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota. Free Radic Biol Med 156:83–98. https://doi.org/10.1016/j.freeradbiomed.2020.04.013

    Article  CAS  PubMed  Google Scholar 

  38. Hou D, Zhao Q, Yousaf L, Khan J, Xue Y, Shen Q (2020) Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet. J Funct Foods 64:103687. https://doi.org/10.1016/j.jff.2019.103687

    Article  Google Scholar 

  39. Wang K, Jin X, Li Q, Sawaya ACHF, Le Leu RK, Conlon MA, Wu L, Hu F (2018) Propolis from different geographic origins decreases intestinal inflammation and Bacteroides spp populations in a model of DSS-induced colitis. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201800080

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, Li H, Wang R, Tang J, Huang T, Zheng J, Sinclair AJ, Mann J, Li D (2019) Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68:1417. https://doi.org/10.1136/gutjnl-2018-317609

    Article  CAS  PubMed  Google Scholar 

  41. Friedrich V, Forné I, Matzek D, Ring D, Popper B, Jochum L, Spriewald S, Straub T, Imhof A, Krug A, Stecher B, Brocker T (2021) Helicobacter hepaticus is required for immune targeting of bacterial heat shock protein 60 and fatal colitis in mice. Gut Microbes 13:1882928. https://doi.org/10.1080/19490976.2021.1882928

    Article  CAS  PubMed Central  Google Scholar 

  42. Leonard W, Zhang P, Ying D, Fang Z (2021) Hydroxycinnamic acids on gut microbiota and health. Compr Rev Food Sci Food Saf 20:710–737. https://doi.org/10.1111/1541-4337.12663

    Article  CAS  PubMed  Google Scholar 

  43. Arnolds K, Lozupone C (2016) Striking a balance with help from our little friends—how the gut microbiota contributes to immune homeostasis. Yale J Biol Med 89:389–395. www.ncbi.nlm.nih.gov/pmc/journals/504/

  44. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vila AV, Võsa U, Mujagic Z, Masclee AA, Jonkers DM, Oosting M (2019) Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet 51:600. https://doi.org/10.1038/s41588-019-0350-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gribble FM, Reimann F (2019) Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat Rev Endocrinol 15:226–237. https://doi.org/10.1038/s41574-019-0168-8

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X-S, Li J, Krautkramer KA, Badri M, Battaglia T, Borbet TC, Koh H, Ng S, Sibley RA, Li Y (2018) Antibiotic-induced acceleration of type 1 diabetes alters maturation of innate intestinal immunity. Elife 7:e37816. https://doi.org/10.7554/eLife.37816

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lagkouvardos I, Lesker TR, Hitch TC, Gálvez EJ, Smit N, Neuhaus K, Wang J, Baines JF, Abt B, Stecher B (2019) Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7:28. https://doi.org/10.1186/s40168-019-0637-2

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tian B, Pan Y, Wang J, Cai M, Ye B, Yang K, Sun P (2022) Insoluble dietary fibers from by-products of edible fungi industry: basic structure, physicochemical properties, and their effects on energy intake. Front Nutr. https://doi.org/10.3389/fnut.2022.851228

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hernández MAG, Canfora EE, Jocken JWE, Blaak EE (2019) The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11:1943. https://doi.org/10.3390/nu11081943

    Article  CAS  Google Scholar 

  50. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat commun 4:1829. https://doi.org/10.1038/ncomms2852

    Article  CAS  PubMed  Google Scholar 

  51. Bernardi S, Del Bo’ C, Marino M, Gargari G, Cherubini A, Andrés-Lacueva C, Hidalgo-Liberona N, Peron G, González-Dominguez R, Kroon P, Kirkup B, Porrini M, Guglielmetti S, Riso P (2020) Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. J Agric Food Chem 68:1816–1829. https://doi.org/10.1021/acs.jafc.9b02283

  52. Lin MY, de Zoete MR, van Putten JP, Strijbis K (2015) Redirection of epithelial immune responses by short-chain fatty acids through inhibition of histone deacetylases. Front Immunol 6:554. https://doi.org/10.3389/fimmu.2015.00554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang D, Sun L, Liu X, Niu Z, Chen S, Tang L, Zheng H, Chen X, Li H, Lu L, Malik V, Lin X (2020) Replacing white rice bars with peanuts as snacks in the habitual diet improves metabolic syndrome risk among Chinese adults: a randomized controlled trial. Am J Clin Nutr 113:28–35. https://doi.org/10.1093/ajcn/nqaa307

    Article  Google Scholar 

  54. Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY (2015) Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88. J Immunol 195:4999–5010. https://doi.org/10.4049/jimmunol.1402598

    Article  CAS  PubMed  Google Scholar 

  55. Gong J, Hu M, Huang Z, Fang K, Wang D, Chen Q, Li J, Yang D, Zou X, Xu L (2017) Berberine attenuates intestinal mucosal barrier dysfunction in type 2 diabetic rats. Front Pharmacol 8:42. https://doi.org/10.3389/fphar.2017.00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was sponsored by Zhejiang Provincial Key Research and Development Program (2022C04036, 2019C02100, 2019C02074 and 2019C02040) and the Cooperative Project Fund of the Zhejiang University of Technology and Zhejiang Institute of Modern TCM and Natural Medicine Co., Ltd. (KYY-HX-20211132). We sincerely thank Zhixin Luo (Northwest A&F University) for animal feeding and management.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, BT and YG; methodology, BT and PW; software, MC and JH; validation and formal analysis, BT and DX; data curation, BT and WC; writing-original draft preparation, BT; writing-review and editing, JN and KY; project administration, BT and PS; and funding acquisition, KY.

Corresponding author

Correspondence to Kai Yang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

394_2022_2927_MOESM1_ESM.docx

Supplementary Information The e-component of this article contains supplementary materials in several parts: 1) Primer sequences used for real-time quantitative PCR; 2)The average body weight changes of mice; 3)The feed intake curve of mice; 4) Alpha diversity analysis of intestinal microbiota in mice; 5) The gut microbial taxonomic profiling at the phylum and genus levels (DOCX 735 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, B., Geng, Y., Wang, P. et al. Ferulic acid improves intestinal barrier function through altering gut microbiota composition in high-fat diet-induced mice. Eur J Nutr 61, 3767–3783 (2022). https://doi.org/10.1007/s00394-022-02927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-022-02927-7

Keywords

Navigation