Skip to main content
Log in

Modulation of Gut Microbiota and Intestinal Barrier Integrity and Inflammation Profile in High Fat-fed Rats

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Gut microbiota dysbiosis and consequent dysregulation of the intestinal barrier homeostasis have been implicated in the development of metabolic complications. Korean red ginseng (RG) and its fermented RG (bio-transformed by microorganism, FRG) have been recognized for their prebiotic role in the regulation of intestinal barrier function and inflammation. Thus, we investigated the effects of RG and FRG supplementation on gut barrier integrity and inflammatory profile in association with the compositional change in the gut microbiota of rats fed a high-fat (HF) diet. Male Sprague-Dawley rats (n = 8/group; 6 weeks old) were counterbalanced by initial weight into four groups and fed either a low-fat (LF; 10% kcal as fat), HF (45% kcal as fat), or HF diet supplemented with RG or FRG at 1% (w/w) in diet for 6 weeks. RG and FRG supplementation led to compositional shifts in the gut microbiota characterized by Eubacterium by RG and Akkermansia genus by FRG, which have been associated with improved obese phenotype and glucose homeostasis. These changes were associated with improvements in gut barrier integrity, consequently protecting from HF-induced local (colon, liver) and systemic inflammation. RG and FRG supplementation also ameliorated lipopolysaccharide-induced inflammation by inhibiting its downstream pathway. Taken together, these data show that RG and FRG supplementation can improve the gut barrier function and local and systemic inflammation in HF-fed rats in association with compositional changes of the gut microbiota, supporting the promising application of RG and FRG for the regulation of gut barrier integrity and inflammatory profile under a metabolic challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qin, J., R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, D. R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. Liang, H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J. M. Batto, T. Hansen, D. Le Paslier, A. Linneberg, H. B. Nielsen, E. Pelletier, P. Renault, T. Sicheritz-Ponten, K. Turner, H. Zhu, C. Yu, S. Li, M. Jian, Y. Zhou, Y. Li, X. Zhang, S. Li, N. Qin, H. Yang, J. Wang, S. Brunak, J. Doré, F. Guarner, K. Kristiansen, O. Pedersen, J. Parkhill, J. Weissenbach, MetaHIT Consortium, P. Bork, S. D. Ehrlich, and J. Wang (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, S. H. and C. B. de La Serre (2015) Gut microbiome-brain communications regulate host physiology and behavior. J. Nutrit. Health Food Sci. 3: 1–12.

    CAS  Google Scholar 

  3. Romaní-Pérez, M., A. Agusti, and Y. Sanz (2017) Innovation in microbiome-based strategies for promoting metabolic health. Curr. Opin. Clin. Nutr. Metab. Care 20: 484–491.

    Article  PubMed  Google Scholar 

  4. Carding, S., K. Verbeke, D. T. Vipond, B. M. Corfe, and L. J. Owen (2015) Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26: 26191.

    PubMed  Google Scholar 

  5. de La Serre, C. B., C. L. Ellis, J. Lee, A. L. Hartman, J. C. Rutledge, and H. E. Raybould (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 299: G440–G448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cani, P. D., J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A. M. Neyrinck, F. Fava, K. M. Tuohy, C. Chabo, A. Waget, E. Delmée, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrières, J. F. Tanti, G. R. Gibson, L. Casteilla, N. M. Delzenne, M. C. Alessi, and R. Burcelin (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761–1772.

    Article  CAS  PubMed  Google Scholar 

  7. de La Serre, C. B., G. de Lartigue, and H. E. Raybould (2015) Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiol. Behav. 139: 188–194.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, S., K. I. Keirsey, R. Kirkland, Z. I. Grunewald, J. G. Fischer, and C. B. de La Serre (2018) Blueberry supplementation influences the gut microbiota, inflammation, and insulin resistance in high-fat-diet-fed rats. J. Nutr. 148: 209–219.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee, S., M. Goodson, W. Vang, K. Kalanetra, D. Barile, and H. Raybould (2020) 2′-fiicosyllactose supplementation improves gut-brain signaling and diet-induced obese phenotype and changes the gut microbiota in high fat-fed mice. Nutrients 12: 1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jeong, S., M. Park, M. Kang, Y.-J. Park, M. Lee, C. You, U. Hwang, Y. Song, H. Park, S. Lee, and H. Suh (2021) Supplementation of non-fermented and fermented red ginseng improves obese phenotypes, lipid and inflammatory profiles, and antioxidant defense system in high fat-fed rats. J. Food Nutr. Res. (Newark) 9: 154–162.

    Article  CAS  Google Scholar 

  11. Lee, S., R. Kirkland, Z. I. Grunewald, Q. Sun, L. Wicker, and C. B. de La Serre (2019) Beneficial effects of non-encapsulated or encapsulated probiotic supplementation on microbiota composition, intestinal barrier functions, inflammatory profiles, and glucose tolerance in high fat fed rats. Nutrients 11: 1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coon, J. T. and E. Ernst (2002) Panax ginseng: a systematic review of adverse effects and drug interactions. Drug Saf. 25: 323–344.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, J.-H. (2012) Cardiovascular diseases and Panax ginseng: a review on molecular mechanisms and medical applications. J. Ginseng Res. 36: 16–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hasegawa, H. (2004) Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci. 95: 153–157.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, M., S. Ding, C. Zhao, X. Gu, X. He, K. Huang, Y. Luo, Z. Liang, H. Tian, and W. Xu (2015) Red Ginseng and Semen Coicis can improve the structure of gut microbiota and relieve the symptoms of ulcerative colitis. J. Ethnopharmacol. 162: 7–13.

    Article  PubMed  Google Scholar 

  16. Jeon, H., H.-Y. Kim, C.-H. Bae, Y. Lee, and S. Kim (2020) Korean red ginseng regulates intestinal tight junction and inflammation in the colon of a Parkinson’s disease mouse model. J. Med. Food 23: 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  17. Ahn, H., B.-C. Han, J. Kim, S. G. Kang, P.-H. Kim, K. H. Jang, S. H. So, S.-H. Lee, and G.-S. Lee (2019) Nonsaponin fraction of Korean Red Ginseng attenuates cytokine production via inhibition of TLR4 expression. J. Ginseng Res. 43: 291–299.

    Article  PubMed  Google Scholar 

  18. Truong, V.-L., M. J. Bak, and W.-S. Jeong (2019) Chemopreventive activity of red ginseng oil in a mouse model of azoxymethane/dextran sulfate sodium-induced inflammation-associated colon carcinogenesis. J. Med. Food 22: 578–586.

    Article  CAS  PubMed  Google Scholar 

  19. Jang, S.-H., J. Park, S.-H. Kim, K.-M. Choi, E.-S. Ko, J.-D. Cha, Y.-R. Lee, H. Jang, and Y.-S. Jang (2017) Oral administration of red ginseng powder fermented with probiotic alleviates the severity of dextran-sulfate sodium-induced colitis in a mouse model. Chin. J. Nat. Med. 15: 192–201.

    CAS  PubMed  Google Scholar 

  20. Fan, J., S. Liu, Z. Ai, Y. Chen, Y. Wang, Y. Li, X. Li, S. Xiao, and Y. Wang (2021) Fermented ginseng attenuates lipopolysaccharide-induced inflammatory responses by activating the TLR4/MAPK signaling pathway and remediating gut barrier. Food Funct. 12: 852–861.

    Article  CAS  PubMed  Google Scholar 

  21. Bae, E.-A., Y.-I. Yoo, I.-A. Lee, M. J. Han, and D.-H. Kim (2008) The anti-inflammmatory effect of fermented red ginseng in experimental colitic mice. Food Agric. Immunol. 19: 313–323.

    Article  CAS  Google Scholar 

  22. Livak, K. J. and T. D. Schmittgen (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  23. Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer, S. M. Owens, J. Betley, L. Fraser, M. Bauer, N. Gormley, J. A. Gilbert, G. Smith, and R. Knight (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6: 1621–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arndt, D., J. Xia, Y. Liu, Y. Zhou, A. C. Guo, J. A. Cruz, I. Sinelnikov, K. Budwill, C. L. Nesbø, and D. S. Wishart (2012) METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40(Web Server issue): W88–W95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Segata, N., J. Izard, L. Waldron, D. Gevers, L. Miropolsky, W. S. Garrett, and C. Huttenhower (2011) Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Udayappan, S., L. Manneras-Holm, A. Chaplin-Scott, C. Belzer, H. Herrema, G. M. Dallinga-Thie, S. H. Duncan, E. S. G. Stroes, A. K. Groen, H. J. Flint, F. Backhed, W. M. de Vos, and M. Nieuwdorp (2016) Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms Microbiomes 2: 16009.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu, S., P. Qin, and J. Wang (2019) High-fat diet alters the intestinal microbiota in streptozotocin-induced type 2 diabetic mice. Microorganisms 7: 176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, S., M. L. Goodson, W. Vang, J. Rutkowsky, K. Kalanetra, M. Bhattacharya, D. Barile, and H. E. Raybould (2021) Human milk oligosaccharide 2’-fucosyllactose supplementation improves gut barrier function and signaling in the vagal afferent pathway in mice. Food Funct. 12: 8507–8521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanauchi, O., M. Fukuda, Y. Matsumoto, S. Ishii, T. Ozawa, M. Shimizu, K. Mitsuyama, and A. Andoh (2006) Eubacterium limosum ameliorates experimental colitis and metabolite of microbe attenuates colonic inflammatory action with increase of mucosal integrity. World J. Gastroenterol. 12: 1071–1077.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xu, Y., N. Wang, H.-Y. Tan, S. Li, C. Zhang, and Y. Feng (2020) Function of Akkermansia muciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Front. Microbiol. 11: 219.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chelakkot, C., J. Ghim, and S. H. Ryu (2018) Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 50: 1–9.

    Article  CAS  PubMed  Google Scholar 

  32. Dun, Y., M. Liu, J. Chen, D. Peng, H. Zhao, Z. Zhou, T. Wang, C. Liu, Y. Guo, C. Zhang, and D. Yuan (2018) Regulatory effects of saponins from Panax japonicus on colonic epithelial tight junctions in aging rats. J. Ginseng Res. 42: 50–56.

    Article  PubMed  Google Scholar 

  33. Zenewicz, L. A., G. D. Yancopoulos, D. M. Valenzuela, A. J. Murphy, S. Stevens, and R. A. Flavell (2008) Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29: 947–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sabihi, M., M. Böttcher, P. Pelczar, and S. Huber (2020) Microbiota-dependent effects of IL-22. Cells 9: 2205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zenewicz, L. A. and R. A. Flavell (2011) Recent advances in IL-22 biology. Int. Immunol. 23: 159–163.

    Article  CAS  PubMed  Google Scholar 

  36. Ceccarelli, S., N. Panera, M. Mina, D. Gnani, C. De Stefanis, A. Crudele, C. Rychlicki, S. Petrini, G. Bruscalupi, L. Agostinelli, L. Stronati, S. Cucchiara, G. Musso, C. Furlanello, G. Svegliati-Baroni, V. Nobili, and A. Alisi (2015) LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in nonalcoholic fatty liver disease. Oncotarget 6: 41434–41452.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Larrosa, M., M. Azorín-Ortuño, M. J. Yañez-Gascón, M. T. García-Conesa, F. Tomás-Barberán, and J. C. Espín (2011) Lack of effect of oral administration of resveratrol in LPS-induced systemic inflammation. Eur. J. Nutr. 50: 673–680.

    Article  CAS  PubMed  Google Scholar 

  38. Khan, H. U., K. Aamir, P. R. Jusuf, G. Sethi, S. P. Sisinthy, R. Ghildyal, and A. Arya (2021) Lauric acid ameliorates lipopoly-saccharide (LPS)-induced liver inflammation by mediating TLR4/MyD88 pathway in Sprague Dawley (SD) rats. Life Sci. 265: 118750.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Sun Moon University Research Grant of 2020.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, validation, formal analysis, and investigation, S.E., H.S., S.L., H.S. and S.J.; Data curation, S.E., S.L.; Writing — original draft preparation, S.E.; Writing — review & editing, S.E., H.S., S.L., H.S., and S.J.; Supervision, S.L., H.S., and S.J.; Funding acquisition, S.L. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Sehoon Jeong or Sunhye Lee.

Ethics declarations

The authors declare no conflict of interest.

Animals were maintained and handled in accordance with protocols approved by the Institutional Animal Care and Use Committee of Sun Moon University (approval no.: SM-2020-01-02, approval date: 2 January 2020).

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eun, S., Seo, H., Suh, Hj. et al. Modulation of Gut Microbiota and Intestinal Barrier Integrity and Inflammation Profile in High Fat-fed Rats. Biotechnol Bioproc E 28, 74–82 (2023). https://doi.org/10.1007/s12257-022-0379-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0379-z

Keywords

Navigation