Skip to main content

Advertisement

Log in

Probiotic supplementation demonstrates therapeutic potential in treating gut dysbiosis and improving neurocognitive function in age-related dementia

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Probiotics, as live microorganisms that improve intestinal microbial balance, have been implicated in the modulation of neurodegenerative diseases via the microbiome–gut–brain axis by improving gut dysbiosis. This review examines the association between probiotics and neurocognitive function in age-related dementia.

Methods

We searched MEDLINE, Embase, Scopus, Web of Science and Cochrane library for in vivo studies using equivalent combinations of “probiotics” and “dementia” as per PRISMA. From the 52 in vivo studies identified, 5 human and 22 animal studies with comparable quantitative outcomes on neurocognitive/behavioural function were meta-analysed by forest plots, subgroup analysis and meta-regression. The analysis of biomarkers, risk of bias and publication bias were also performed.

Results

In elderly humans, probiotics correlates with a non-significant difference of neurocognitive function in Mini-Mental State Examination, but with significant improvement only in those diagnosed with Alzheimer’s disease. In animals, probiotics significantly improved neurocognitive function as measured by Morris Water Maze, Y-Maze, and Passive Avoidance. Further analysis by subgrouping and meta-regression found that the probiotics-neurodegeneration association is age dependent in humans but is neither dose dependent nor duration dependent in animals or humans. Analysis of biomarkers suggested that the neurocognitive effect of probiotics is associated with an altered gut microbiome profile, downregulated proteinopathic, inflammatory and autophagic pathways, and upregulated anti-oxidative, neurotrophic, and cholinergic pathways.

Conclusion

Overall, we report promising results in animal studies but limited evidence of probiotics leading to neurocognitive improvement in humans. More research into probiotics should be conducted, especially on live biotherapeutic products for targeted treatment of gut dysbiosis and age-related dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904. https://doi.org/10.1152/physrev.00045.2009

    Article  CAS  PubMed  Google Scholar 

  3. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26(1):26191. https://doi.org/10.3402/mehd.v26.26191

    Article  PubMed  Google Scholar 

  4. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185. https://doi.org/10.1126/science.1566067

    Article  CAS  PubMed  Google Scholar 

  5. Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286(17):15317–15331. https://doi.org/10.1074/jbc.M110.209296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23(1):134–147. https://doi.org/10.1016/s0891-5849(96)00629-6

    Article  CAS  PubMed  Google Scholar 

  8. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147. https://doi.org/10.1136/jnnp.66.2.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morais LH, Schreiber HLt, Mazmanian SK, (2021) The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 19(4):241–255. https://doi.org/10.1038/s41579-020-00460-0

    Article  CAS  PubMed  Google Scholar 

  10. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141 (2):599–609, 609 e591–593. https://doi.org/10.1053/j.gastro.2011.04.052

  11. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463. https://doi.org/10.1016/j.cell.2013.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK (2019) Microbiome-microglia connections via the gut-brain axis. J Exp Med 216(1):41–59. https://doi.org/10.1084/jem.20180794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Villumsen M, Aznar S, Pakkenberg B, Jess T, Brudek T (2019) Inflammatory bowel disease increases the risk of Parkinson’s disease: a Danish nationwide cohort study 1977–2014. Gut 68(1):18–24. https://doi.org/10.1136/gutjnl-2017-315666

    Article  CAS  PubMed  Google Scholar 

  14. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB, Rey FE (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):13537. https://doi.org/10.1038/s41598-017-13601-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hotel ACP, Cordoba A (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Prevention 5(1):1–10

    Google Scholar 

  16. Brown AC, Valiere A (2004) Probiotics and medical nutrition therapy. Nutr Clin Care 7(2):56–68

    PubMed  PubMed Central  Google Scholar 

  17. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341. https://doi.org/10.1016/j.ijsu.2010.02.007

    Article  PubMed  Google Scholar 

  18. Pique N, Berlanga M, Minana-Galbis D (2019) Health benefits of heat-killed (Tyndallized) probiotics: an overview. Int J Mol Sci 20(10):2534. https://doi.org/10.3390/ijms20102534

    Article  CAS  PubMed Central  Google Scholar 

  19. Tombaugh TN, McIntyre NJ (1992) The mini-mental state examination: a comprehensive review. J Am Geriatr Soc 40(9):922–935. https://doi.org/10.1111/j.1532-5415.1992.tb01992.x

    Article  CAS  PubMed  Google Scholar 

  20. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90. https://doi.org/10.1016/s0165-0173(01)00067-4

    Article  CAS  PubMed  Google Scholar 

  21. Hughes RN (2004) The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev 28(5):497–505. https://doi.org/10.1016/j.neubiorev.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  22. Ogren SO, Eriksson TM, Elvander-Tottie E, D’Addario C, Ekstrom JC, Svenningsson P, Meister B, Kehr J, Stiedl O (2008) The role of 5-HT(1A) receptors in learning and memory. Behav Brain Res 195(1):54–77. https://doi.org/10.1016/j.bbr.2008.02.023

    Article  CAS  PubMed  Google Scholar 

  23. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14(1):43. https://doi.org/10.1186/1471-2288-14-43

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernan MA, Hopewell S, Hrobjartsson A, Junqueira DR, Juni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  Google Scholar 

  25. Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56(2):455–463. https://doi.org/10.1111/j.0006-341x.2000.00455.x

    Article  CAS  PubMed  Google Scholar 

  26. Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36(3):1–48

    Article  Google Scholar 

  27. Collaboration C (2020) Review Manager (RevMan)[Computer program]. Version 5.4 for Windows. Oxford: The Cochrane Collaboration

  28. Bergeron D, Flynn K, Verret L, Poulin S, Bouchard RW, Bocti C, Fülöp T, Lacombe G, Gauthier S, Nasreddine Z (2017) Multicenter validation of an MMSE-Mo CA conversion table. J Am Geriatr Soc 65(5):1067–1072

    Article  PubMed  Google Scholar 

  29. Lidbeck A, Nord CE (1993) Lactobacilli and the normal human anaerobic microflora. Clin Infect Dis 16 Suppl 4 (Supplement_4):S181–187. https://doi.org/10.1093/clinids/16.supplement_4.s181

  30. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99(22):14422–14427. https://doi.org/10.1073/pnas.212527599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou C, Zhao H, Xiao XY, Chen BD, Guo RJ, Wang Q, Chen H, Zhao LD, Zhang CC, Jiao YH, Ju YM, Yang HX, Fei YY, Wang L, Shen M, Li H, Wang XH, Lu X, Yang B, Liu JJ, Li J, Peng LY, Zheng WJ, Zhang CY, Zhou JX, Wu QJ, Yang YJ, Su JM, Shi Q, Wu D, Zhang W, Zhang FC, Jia HJ, Liu DP, Jie ZY, Zhang X (2020) Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J Autoimmun 107:102360. https://doi.org/10.1016/j.jaut.2019.102360

    Article  CAS  PubMed  Google Scholar 

  32. Corpuz HM, Ichikawa S, Arimura M, Mihara T, Kumagai T, Mitani T, Nakamura S, Katayama S (2018) Long-term diet supplementation with lactobacillus paracasei K71 prevents age-related cognitive decline in senescence-accelerated mouse prone 8. Nutrients 10(6):762. https://doi.org/10.3390/nu10060762

    Article  CAS  PubMed Central  Google Scholar 

  33. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  34. Guidance for industry: early clinical trials with live biotherapeutic products: chemistry, manufacturing, and control information (2016) US Food and Drug Administration

  35. Rouanet A, Bolca S, Bru A, Claes I, Cvejic H, Girgis H, Harper A, Lavergne SN, Mathys S, Pane M, Pot B, Shortt C, Alkema W, Bezulowsky C, Blanquet-Diot S, Chassard C, Claus SP, Hadida B, Hemmingsen C, Jeune C, Lindman B, Midzi G, Mogna L, Movitz C, Nasir N, Oberreither M, Seegers J, Sterkman L, Valo A, Vieville F, Cordaillat-Simmons M (2020) Live biotherapeutic products, a road map for safety assessment. Front Med (Lausanne) 7:237. https://doi.org/10.3389/fmed.2020.00237

    Article  Google Scholar 

  36. O’Toole PW, Marchesi JR, Hill C (2017) Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol 2(5):17057. https://doi.org/10.1038/nmicrobiol.2017.57

    Article  CAS  PubMed  Google Scholar 

  37. Ton AMM, Campagnaro BP, Alves GA, Aires R, Côco LZ, Arpini CM, Guerra e Oliveira T, Campos-Toimil M, Meyrelles SS, Pereira TMC, Vasquez EC (2020) Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxidative Med Cell Longevity 2020:2638703. https://doi.org/10.1155/2020/2638703

    Article  CAS  Google Scholar 

  38. Huebner J, Wehling RL, Hutkins RW (2007) Functional activity of commercial prebiotics. Int Dairy J 17(7):770–775. https://doi.org/10.1016/j.idairyj.2006.10.006

    Article  CAS  Google Scholar 

  39. Agahi A, Hamidi G, Salami M, Alinaghipour A, Daneshvar Kakhaki R, Soheili M (2018) The effect of probiotic supplementations on cognitive function in patients with primary and secondary Alzheimer. J Arak University Med Sci 20(12):1–9

    Google Scholar 

  40. Agahi A, Hamidi GA, Daneshvar R, Hamdieh M, Soheili M, Alinaghipour A, Esmaeili Taba SM, Salami M (2018) Does severity of Alzheimer’s disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front Neurol 9:662

    Article  PubMed  PubMed Central  Google Scholar 

  41. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, Hamidi GA, Salami M (2016) Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 8:256. https://doi.org/10.3389/fnagi.2016.00256

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bernier F, Ohno K, Katsumata N, Shimizu T, Xiao J (2021) Association of plasma hemoglobin A1c with improvement of cognitive functions by probiotic Bifidobacterium breve supplementation in healthy adults with mild cognitive impairment. J Alzheimers Dis 81(2):493–497. https://doi.org/10.3233/JAD-201488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hwang YH, Park S, Paik JW, Chae SW, Kim DH, Jeong DG, Ha E, Kim M, Hong G, Park SH, Jung SJ, Lee SM, Na KH, Kim J, Chung YC (2019) Efficacy and safety of lactobacillus plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: A 12-Week, multi-center, randomized, double-blind. Placebo-Controll Clin Trial Nutr 11(2):305. https://doi.org/10.3390/nu11020305

    Article  CAS  Google Scholar 

  44. Inoue T, Kobayashi Y, Mori N, Sakagawa M, Xiao JZ, Moritani T, Sakane N, Nagai N (2018) Effect of combined bifidobacteria supplementation and resistance training on cognitive function, body composition and bowel habits of healthy elderly subjects. Benef Microbes 9(6):843–853. https://doi.org/10.3920/BM2017.0193

    Article  CAS  PubMed  Google Scholar 

  45. Kim CS, Cha L, Sim M, Jung S, Chun WY, Baik HW, Shin DM (2021) Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A Biol Sci Med Sci 76(1):32–40. https://doi.org/10.1093/gerona/glaa090

    Article  CAS  PubMed  Google Scholar 

  46. Kobayashi Y, Kinoshita T, Matsumoto A, Yoshino K, Saito I, Xiao JZ (2019) Bifidobacterium Breve A1 supplementation improved cognitive decline in older adults with mild cognitive impairment: an open-label. Single-Arm Study J Prev Alzheimers Dis 6(1):70–75. https://doi.org/10.14283/jpad.2018.32

    Article  CAS  PubMed  Google Scholar 

  47. Kobayashi Y, Kuhara T, Oki M, Xiao JZ (2019) Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef Microbes 10(5):511–520. https://doi.org/10.3920/BM2018.0170

    Article  CAS  PubMed  Google Scholar 

  48. Leblhuber F, Steiner K, Schuetz B, Fuchs D, Gostner JM (2018) Probiotic supplementation in patients with Alzheimer’s Dementia - an explorative intervention study. Curr Alzheimer Res 15(12):1106–1113. https://doi.org/10.2174/1389200219666180813144834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Louzada ER, Ribeiro SML (2020) Synbiotic supplementation, systemic inflammation, and symptoms of brain disorders in elders: A secondary study from a randomized clinical trial. Nutr Neurosci 23(2):93–100. https://doi.org/10.1080/1028415X.2018.1477349

    Article  CAS  PubMed  Google Scholar 

  50. Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, Tajabadi-Ebrahimi M, Asemi Z (2019) Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin Nutr 38(6):2569–2575. https://doi.org/10.1016/j.clnu.2018.11.034

    Article  CAS  PubMed  Google Scholar 

  51. Xiao J, Katsumata N, Bernier F, Ohno K, Yamauchi Y, Odamaki T, Yoshikawa K, Ito K, Kaneko T (2020) Probiotic Bifidobacterium breve in improving cognitive functions of older adults with suspected mild cognitive impairment: a randomized, double-blind. Placebo-Controlled Trial J Alzheimers Dis 77(1):139–147. https://doi.org/10.3233/JAD-200488

    Article  CAS  PubMed  Google Scholar 

  52. Abraham D, Feher J, Scuderi GL, Szabo D, Dobolyi A, Cservenak M, Juhasz J, Ligeti B, Pongor S, Gomez-Cabrera MC, Vina J, Higuchi M, Suzuki K, Boldogh I, Radak Z (2019) Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: Role of microbiome. Exp Gerontol 115:122–131. https://doi.org/10.1016/j.exger.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  53. Athari Nik Azm S, Djazayeri A, Safa M, Azami K, Ahmadvand B, Sabbaghziarani F, Sharifzadeh M, Vafa M (2018) Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in beta-amyloid (1–42) injected rats. Appl Physiol Nutr Metab 43(7):718–726. https://doi.org/10.1139/apnm-2017-0648

    Article  CAS  PubMed  Google Scholar 

  54. Bonfili L, Cecarini V, Berardi S, Scarpona S, Suchodolski JS, Nasuti C, Fiorini D, Boarelli MC, Rossi G, Eleuteri AM (2017) Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Sci Rep 7(1):2426. https://doi.org/10.1038/s41598-017-02587-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, Berardi S, Scarpona S, Rossi G, Eleuteri AM (2018) SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol Neurobiol 55(10):7987–8000. https://doi.org/10.1007/s12035-018-0973-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bonfili L, Cecarini V, Gogoi O, Berardi S, Scarpona S, Angeletti M, Rossi G, Eleuteri AM (2020) Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Aging 87:35–43

    Article  CAS  PubMed  Google Scholar 

  57. Cao J, Amakye WK, Qi C, Liu X, Ma J, Ren J (2021) Bifidobacterium Lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer’s disease in the APP/PS1 mouse model. Eur J Nutr. https://doi.org/10.1007/s00394-021-02543-x

    Article  PubMed  Google Scholar 

  58. Cogliati S, Clementi V, Francisco M, Crespo C, Arganaraz F, Grau R (2020) Bacillus subtilis delays neurodegeneration and behavioral impairment in the Alzheimer’s disease model caenorhabditis elegans. J Alzheimers Dis 73(3):1035–1052. https://doi.org/10.3233/JAD-190837

    Article  PubMed  Google Scholar 

  59. Distrutti E, O’Reilly JA, McDonald C, Cipriani S, Renga B, Lynch MA, Fiorucci S (2014) Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS ONE 9(9):e106503. https://doi.org/10.1371/journal.pone.0106503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Go J, Chang DH, Ryu YK, Park HY, Lee IB, Noh JR, Hwang DY, Kim BC, Kim KS, Lee CH (2021) Human gut microbiota Agathobaculum butyriciproducens improves cognitive impairment in LPS-induced and APP/PS1 mouse models of Alzheimer’s disease. Nutr Res 86:96–108. https://doi.org/10.1016/j.nutres.2020.12.010

    Article  CAS  PubMed  Google Scholar 

  61. Ho ST, Hsieh YT, Wang SY, Chen MJ (2019) Improving effect of a probiotic mixture on memory and learning abilities in d-galactose-treated aging mice. J Dairy Sci 102(3):1901–1909. https://doi.org/10.3168/jds.2018-15811

    Article  CAS  PubMed  Google Scholar 

  62. Huang SY, Chen LH, Wang MF, Hsu CC, Chan CH, Li JX, Huang HY (2018) Lactobacillus paracasei PS23 delays progression of age-related cognitive decline in senescence accelerated mouse prone 8 (SAMP8) mice. Nutrients 10(7):894. https://doi.org/10.3390/nu10070894

    Article  CAS  PubMed Central  Google Scholar 

  63. Jeong JJ, Kim KA, Ahn YT, Sim JH, Woo JY, Huh CS, Kim DH (2015) Probiotic mixture KF attenuates age-dependent memory deficit and lipidemia in fischer 344 rats. J Microbiol Biotechnol 25(9):1532–1536. https://doi.org/10.4014/jmb.1505.05002

    Article  CAS  PubMed  Google Scholar 

  64. Jung IH, Jung MA, Kim EJ, Han MJ, Kim DH (2012) Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice. J Appl Microbiol 113(6):1498–1506. https://doi.org/10.1111/j.1365-2672.2012.05437.x

    Article  CAS  PubMed  Google Scholar 

  65. Kaur H, Nagamoto-Combs K, Golovko S, Golovko MY, Klug MG, Combs CK (2020) Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer’s disease. Neurobiol Aging 92:114–134. https://doi.org/10.1016/j.neurobiolaging.2020.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, Kondo T, Abe K, Xiao JZ (2017) Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 7(1):13510. https://doi.org/10.1038/s41598-017-13368-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lew L-C, Hor Y-Y, Jaafar M-H, Khoo B-Y, Sasidharan S, Choi S-B, Ong K-L, Kato T, Nakanishi Y, Ohno H (2019) Effects of potential probiotic strains on the fecal microbiota and metabolites of d-galactose-induced aging rats fed with high-fat diet. Probiotics Antimicrob Prot 12:1–18

    Google Scholar 

  68. Lee HJ, Lim SM, Kim DH (2018) Lactobacillus johnsonii CJLJ103 attenuates scopolamine-induced memory impairment in mice by increasing BDNF expression and inhibiting NF-kappaB activation. J Microbiol Biotechnol 28(9):1443–1446. https://doi.org/10.4014/jmb.1805.05025

    Article  CAS  PubMed  Google Scholar 

  69. Lee HJ, Lee KE, Kim JK, Kim DH (2019) Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Sci Rep 9(1):11814. https://doi.org/10.1038/s41598-019-48342-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nimgampalle M, Kuna Y (2017) Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s Disease induced Albino Rats. J Clin Diagn Res. https://doi.org/10.7860/JCDR/2017/26106.10428

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mehrabadi S, Sadr SS (2020) Assessment of probiotics mixture on memory function, inflammation markers, and oxidative stress in an Alzheimer’s disease model of rats. Iran Biomed J 24(4):220–228. https://doi.org/10.29252/ibj.24.4.220

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ni Y, Yang X, Zheng L, Wang Z, Wu L, Jiang J, Yang T, Ma L, Fu Z (2019) Lactobacillus and bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol Nutr Food Res 63(22):e1900603. https://doi.org/10.1002/mnfr.201900603

    Article  CAS  PubMed  Google Scholar 

  73. Ou Z, Deng L, Lu Z, Wu F, Liu W, Huang D, Peng Y (2020) Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr Diabetes 10(1):12. https://doi.org/10.1038/s41387-020-0115-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Patel C, Pande S, Acharya S (2020) Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn Schmiedebergs Arch Pharmacol 393(10):1955–1962. https://doi.org/10.1007/s00210-020-01904-3

    Article  CAS  PubMed  Google Scholar 

  75. Qian Y, Zhang J, Zhou X, Yi R, Mu J, Long X, Pan Y, Zhao X, Liu W (2018) Lactobacillus plantarum CQPC11 isolated from sichuan pickled cabbages antagonizes d-galactose-induced oxidation and aging in mice. Molecules 23(11):3026. https://doi.org/10.3390/molecules23113026

    Article  CAS  PubMed Central  Google Scholar 

  76. Rezaeiasl Z, Salami M, Sepehri G (2019) The effects of probiotic Lactobacillus and Bifidobacterium strains on memory and learning behavior, long-term potentiation (LTP), and some biochemical parameters in β-amyloid-induced rat’s model of Alzheimer’s disease. Preven Nutr Food Sci 24(3):265

    Article  CAS  Google Scholar 

  77. Asl ZR, Sepehri G, Salami M (2019) Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease. Behav Brain Res 376:112183

    Article  Google Scholar 

  78. Romo-Araiza A, Gutiérrez-Salmeán G, Galván EJ, Hernández-Frausto M, Herrera-López G, Romo-Parra H, García-Contreras V, Fernández-Presas AM, Jasso-Chávez R, Borlongan CV (2018) Probiotics and prebiotics as a therapeutic strategy to improve memory in a model of middle-aged rats. Front Aging Neurosci 10:416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shamsipour S, Sharifi G, Taghian F (2021) An 8-week administration of bifidobacterium bifidum and lactobacillus plantarum combined with exercise training alleviates neurotoxicity of abeta and spatial learning via acetylcholine in Alzheimer rat model. J Mol Neurosci 71(7):1495–1505. https://doi.org/10.1007/s12031-021-01812-y

    Article  CAS  PubMed  Google Scholar 

  80. Song GL, Chen C, Wu QY, Zhang ZH, Zheng R, Chen Y, Jia SZ, Ni JZ (2018) Selenium-enriched yeast inhibited beta-amyloid production and modulated autophagy in a triple transgenic mouse model of Alzheimer’s disease. Metallomics 10(8):1107–1115. https://doi.org/10.1039/c8mt00041g

    Article  CAS  PubMed  Google Scholar 

  81. Sun J, Xu J, Yang B, Chen K, Kong Y, Fang N, Gong T, Wang F, Ling Z, Liu J (2020) Effect of clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Mol Nutr Food Res 64(2):e1900636. https://doi.org/10.1002/mnfr.201900636

    Article  CAS  PubMed  Google Scholar 

  82. Teglas T, Abraham D, Jokai M, Kondo S, Mohammadi R, Feher J, Szabo D, Wilhelm M, Radak Z (2020) Exercise combined with a probiotics treatment alters the microbiome, but moderately affects signalling pathways in the liver of male APP/PS1 transgenic mice. Biogerontology 21(6):807–815. https://doi.org/10.1007/s10522-020-09895-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang F, Xu T, Zhang Y, Zheng T, He Y, He F, Jiang Y (2020) Long-term combined administration of Bifidobacterium bifidum TMC3115 and Lactobacillus plantarum 45 alleviates spatial memory impairment and gut dysbiosis in APP/PS1 mice. FEMS Microbiol Lett 367(7):fnaa048. https://doi.org/10.1093/femsle/fnaa048

    Article  CAS  PubMed  Google Scholar 

  84. Wang QJ, Shen YE, Wang X, Fu S, Zhang X, Zhang YN, Wang RT (2020) Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice. Aging (Albany NY) 12(1):628–649. https://doi.org/10.18632/aging.102645

    Article  CAS  Google Scholar 

  85. Westfall S, Lomis N, Prakash S (2019) A novel synbiotic delays Alzheimer’s disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster. PLoS ONE 14(4):e0214985. https://doi.org/10.1371/journal.pone.0214985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Woo JY, Gu W, Kim KA, Jang SE, Han MJ, Kim DH (2014) Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe 27:22–26. https://doi.org/10.1016/j.anaerobe.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  87. Yang X, Yu D, Xue L, Li H, Du J (2020) Probiotics modulate the microbiota–gut–brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm Sin B 10(3):475–487. https://doi.org/10.1016/j.apsb.2019.07.001

    Article  CAS  PubMed  Google Scholar 

  88. Zaydi AI, Lew LC, Hor YY, Jaafar MH, Chuah LO, Yap KP, Azlan A, Azzam G, Liong MT (2020) Lactobacillus plantarum DR7 improved brain health in aging rats via the serotonin, inflammatory and apoptosis pathways. Benef Microbes 11(8):753–766. https://doi.org/10.3920/BM2019.0200

    Article  CAS  PubMed  Google Scholar 

  89. Zhang ZH, Wen L, Wu QY, Chen C, Zheng R, Liu Q, Ni JZ, Song GL (2017) Long-term dietary supplementation with selenium-enriched yeast improves cognitive impairment, reverses synaptic deficits, and mitigates tau pathology in a triple transgenic mouse model of Alzheimer’s disease. J Agric Food Chem 65(24):4970–4979. https://doi.org/10.1021/acs.jafc.7b01465

    Article  CAS  PubMed  Google Scholar 

  90. Zhao X, Yi R, Zhou X, Mu J, Long X, Pan Y, Song JL, Park KY (2019) Preventive effect of Lactobacillus plantarum KSFY02 isolated from naturally fermented yogurt from Xinjiang, China, on d-galactose-induced oxidative aging in mice. J Dairy Sci 102(7):5899–5912. https://doi.org/10.3168/jds.2018-16033

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study has no source of funding.

Author information

Authors and Affiliations

Authors

Contributions

Prof. Francis Ka Leung Chan is the guarantor of this review article. HYH and CHC have joint authorship of this publication. HYH, CHC and WYM performed the literature review and wrote the manuscript. HYH and CHC drafted the tables and figures. WYM and FKL proposed the review project, WYM, TZ, HK and FKL critically revised the manuscript, WYM and FKL supervised the review process. All authors approved the final version of the article, including the authorship list.

Corresponding author

Correspondence to Henry Yue Hong Meng.

Ethics declarations

Availability of data and material

Not applicable.

Code availability

Not applicable.

Conflict of interest

The authors declare no conflict of interest related to this work.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Documentation

The progress of this study has been documented from conception on ResearchGate (https://www.researchgate.net/project/Probiotic-modulation-on-neurocognitive-decline).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 390 KB)

Supplementary file2 (DOCX 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H.Y.H., Mak, C.C.H., Mak, W.Y. et al. Probiotic supplementation demonstrates therapeutic potential in treating gut dysbiosis and improving neurocognitive function in age-related dementia. Eur J Nutr 61, 1701–1734 (2022). https://doi.org/10.1007/s00394-021-02760-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02760-4

Keywords

Navigation