Skip to main content

Advertisement

Log in

Bifidobacterium Lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer’s disease in the APP/PS1 mouse model

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Studies have shown that Alzheimer’s disease is associated with significant alterations in the gut microbiota. But the effect of probiotics and/or prebiotics on Alzheimer’s disease still remains to be explored. The aim of this study was to determine whether Bifidobacterium Lactis Probio-M8 could alleviate Alzheimer’s disease pathophysiologies in the APP/PS1 transgenic mouse model.

Methods

4-month old APP/PS1 mice were randomly put into two groups and fed with either Probio-M8 or saline water for 45 days. Fecal samples of mice were collected at the beginning and the end of the treatment period to determine the composition of the gut microbiota via 16S ribosomal RNA sequencing technology. The number and size of Aβ plaques in the brain were quantified. In addition, Y maze, novel object recognition and nest building were employed to access cognitive function in the 8-months old APP/PS1 mice at the end of the treatment period.

Conclusion

Our results demonstrated that Probio-M8 reduced Aβ plaque burden in the whole brain and protected against gut microbiota dysbiosis. Furthermore, Probio-M8 could alleviate cognitive impairment in the APP/PS1 mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sampson T, Debelius J, Thron T, Janssen S, Shastri G, Ilhan ZE, Challis C, Schretter C, Rocha S, Gradinaru V (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vogt NM, Kerby RL, Dillmcfarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):P563. https://doi.org/10.1038/s41598-017-13601-y

    Article  CAS  Google Scholar 

  3. Long-Smith C, O’Riordan KJ, Clarke G, Stanton C, Dinan TG, Cryan JF (2020) Microbiota-gut-brain axis: new therapeutic opportunities. Annu Rev Pharmacol Toxicol 60:477–502. https://doi.org/10.1146/annurev-pharmtox-010919-023628

    Article  CAS  PubMed  Google Scholar 

  4. Cecarini V, Bonfili L, Gogoi O, Lawrence S, Venanzi FM, Azevedo V, Mancha-Agresti P, Drumond MM, Rossi G, Berardi S, Galosi L, Cuccioloni M, Angeletti M, Suchodolski JS, Pilla R, Lidbury JA, Eleuteri AM (2020) Neuroprotective effects of p62(SQSTM1)-engineered lactic acid bacteria in Alzheimer’s disease: a pre-clinical study. Aging (Albany NY) 12(16):15995–16020. https://doi.org/10.18632/aging.103900

    Article  CAS  Google Scholar 

  5. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764. https://doi.org/10.1017/s0007114510004319

    Article  CAS  PubMed  Google Scholar 

  6. Kowalski K, Mulak A (2019) Brain–gut–microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil 25(1):48–60. https://doi.org/10.5056/jnm18087

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alonso C, Guilarte M, Vicario M, Ramos L, Rezzi S, Martinez C, Lobo B, Martin FP, Pigrau M, Gonzalez-Castro AM, Gallart M, Malagelada JR, Azpiroz F, Kochhar S, Santos J (2012) Acute experimental stress evokes a differential gender-determined increase in human intestinal macromolecular permeability. Neurogastroenterol Motil 24(8):740–746. https://doi.org/10.1111/j.1365-2982.2012.01928.x

    Article  CAS  PubMed  Google Scholar 

  8. Challis C, Hori A, Sampson TR, Yoo BB, Challis RC, Hamilton AM, Mazmanian SK, Volpicelli-Daley LA, Gradinaru V (2020) Gut-seeded alpha-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat Neurosci 23(3):327–336. https://doi.org/10.1038/s41593-020-0589-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim S, Kwon S-H, Kam T-I, Panicker N, Karuppagounder SS, Lee S, Lee JH, Kim WR, Kook M, Foss CA, Shen C, Lee H, Kulkarni S, Pasricha PJ, Lee G, Pomper MG, Dawson VL, Dawson TM, Ko HS (2019) Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103(4):627. https://doi.org/10.1016/j.neuron.2019.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A, Ma P, Potts DE, Chen Z, Paik D, Soualhi S, Yan Y, Misra A, Goldstein K, Lagomarsino VN, Nordstrom A, Sivanathan KN, Wallrapp A, Kuchroo VK, Nowarski R, Starnbach MN, Shi H, Surana NK, An D, Wu C, Huh JR, Rao M, Chiu IM (2020) Gut-innervating nociceptor neurons regulate Peyer’s patch microfold cells and SFB levels to mediate salmonella host defense. Cell 180(1):33–49. https://doi.org/10.1016/j.cell.2019.11.014

    Article  CAS  PubMed  Google Scholar 

  11. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, Ferrari C, Guerra UP, Paghera B, Muscio C, Bianchetti A, Volta GD, Turla M, Cotelli MS, Gennuso M, Prelle A, Zanetti O, Lussignoli G, Mirabile D, Bellandi D, Gentile S, Belotti G, Villani D, Harach T, Bolmont T, Padovani A, Boccardi M, Frisoni GB, Grp I-F (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68. https://doi.org/10.1016/j.neurobiolaging.2016.08.019

    Article  CAS  PubMed  Google Scholar 

  12. As A (2019) 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 15(3):321–387. https://doi.org/10.1016/j.jalz.2019.01.010

    Article  Google Scholar 

  13. Seo D-o, Boros BD, Holtzman DM (2019) The microbiome: a target for Alzheimer disease? Cell Res 29(10):779–780. https://doi.org/10.1038/s41422-019-0227-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, Lü Y, Cai M, Zhu C, Tan YL (2018) Gut microbiome is altered in patients with Alzheimer’s disease. J Alzheimers Dis Jad 63(4):1–10. https://doi.org/10.3233/JAD-180176

    Article  CAS  Google Scholar 

  15. Brandscheid C, Schuck F, Reinhardt S, Schafer KH, Pietrzik CU, Grimm M, Hartmann T, Schwiertz A, Endres K (2017) Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 56(2):775–788. https://doi.org/10.3233/JAD-160926

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Wang Y, Xiayu X, Shi C, Chen W, Song N, Fu X, Zhou R, Xu YF, Huang L, Zhu H, Han Y, Qin C (2017) Altered gut microbiota in a mouse model of Alzheimer’s disease. J Alzheimers Dis 60(4):1241–1257. https://doi.org/10.3233/JAD-170020

    Article  CAS  PubMed  Google Scholar 

  17. Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, Neher JJ, Fak F, Jucker M, Lasser T, Bolmont T (2017) Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7:41802. https://doi.org/10.1038/srep41802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim M-S, Kim Y, Choi H, Kim W, Park S, Lee D, Kim DK, Kim HJ, Choi H, Hyun D-W, Lee J-Y, Choi EY, Lee D-S, Bae J-W, Mook-Jung I (2019) Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut. https://doi.org/10.1136/gutjnl-2018-317431

    Article  PubMed  Google Scholar 

  19. Kim CS, Cha L, Sim M, Jung S, Chun WY, Baik HW, Shin DM (2020) Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling elderly: a randomized, double-blind, placebo-controlled, multicenter trial. J Gerontol A Biol Sci Med Sci. https://doi.org/10.1093/gerona/glaa090

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, Xie Z, Chu X, Yang J, Wang H, Chang S, Gong Y, Ruan L, Zhang G, Yan S, Lian W, Du C, Yang D, Zhang Q, Lin F, Liu J, Zhang H, Ge C, Xiao S, Ding J, Geng M (2019) Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. https://doi.org/10.1038/s41422-019-0216-x

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Li N, Yang J-J, Zhao D-M, Chen B, Zhang G-Q, Chen S, Cao R-F, Yu H, Zhao C-Y, Zhao L, Ge Y-S, Liu Y, Zhang L-H, Hu W, Zhang L, Gai Z-T (2020) Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacol Res 157:104784. https://doi.org/10.1016/j.phrs.2020.104784

    Article  CAS  PubMed  Google Scholar 

  22. Liu W, Chen M, Duo L, Wang J, Guo S, Sun H, Menghe B, Zhang H (2020) Characterization of potentially probiotic lactic acid bacteria and bifidobacteria isolated from human colostrum. J Dairy Sci 103(5):4013–4025. https://doi.org/10.3168/jds.2019-17602

    Article  CAS  PubMed  Google Scholar 

  23. Zhang W, Wang Y, Li K, Kwok L-Y, Liu W, Zhang H (2020) Short communication: modulation of fatty acid metabolism improves oxygen tolerance of Bifidobacterium animalis ssp. lactis Probio-M8. J Dairy Sci 103(10):8791–8795. https://doi.org/10.3168/jds.2019-18049

    Article  CAS  PubMed  Google Scholar 

  24. Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR (2001) Co-expression of multiple transgenes in mouse CNS a comparison of strategies. Biomol Eng 17(6):157–165. https://doi.org/10.1016/s1389-0344(01)00067-3

    Article  CAS  PubMed  Google Scholar 

  25. Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR (2003) Mutant presenilins specifically elevate the levels of the 42 residue β-amyloid peptide in vivo: evidence for augmentation of a 42-specific γ secretase. Hum Mol Genet 13(2):159–170. https://doi.org/10.1093/hmg/ddh019

    Article  PubMed  Google Scholar 

  26. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wickham H, Averick M, Bryan J, Chang W, Yutani H (2019) Welcome to the Tidyverse. J Open Source Softw 4(43):1686. https://doi.org/10.21105/joss.01686

    Article  Google Scholar 

  29. McMurdie PJ, Holmes S (2013) phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y (2017) ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8(1):28–36. https://doi.org/10.1111/2041-210x.12628

    Article  Google Scholar 

  31. Gloor GB, Macklaim JM, Fernandes AD (2016) Displaying variation in large datasets: plotting a visual summary of effect sizes. J Comput Graph Stat 25(3):971–979. https://doi.org/10.1080/10618600.2015.1131161

    Article  Google Scholar 

  32. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Enis A, Dannon B, Bérénice B, van den Marius B, Dave B, Martin Č, John C, Dave C, Nate C, GB A (2018) The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res W1:W1. https://doi.org/10.1093/nar/gky379

    Article  CAS  Google Scholar 

  34. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jung JS, Yan JJ, Li HM, Sultan MT, Yu J, Lee HS, Shin KJ, Song DK (2016) Protective effects of a dimeric derivative of ferulic acid in animal models of Alzheimer’s disease. Eur J Pharmacol 782:30–34. https://doi.org/10.1016/j.ejphar.2016.04.047

    Article  CAS  PubMed  Google Scholar 

  36. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

    Article  CAS  PubMed  Google Scholar 

  37. Shehu A, Magaji MG, Yau J, Ahmed A (2019) Methanol stem bark extract of Adansonia digitata ameliorates chronic unpredictable mild stress-induced depression-like behavior: Involvement of the HPA axis, BDNF, and stress biomarkers pathways. J Basic Clin Physiol Pharmacol. https://doi.org/10.1515/jbcpp-2018-0153

    Article  PubMed  Google Scholar 

  38. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110. https://doi.org/10.1007/s10339-011-0430-z

    Article  CAS  PubMed  Google Scholar 

  39. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472(7344):466-U539. https://doi.org/10.1038/nature09817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paumier KL, Sukoff Rizzo SJ, Berger Z, Chen Y, Gonzales C, Kaftan E, Li L, Lotarski S, Monaghan M, Shen W, Stolyar P, Vasilyev D, Zaleska M, W DH, Dunlop J, (2013) Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson’s disease. PLoS ONE 8(8):e70274. https://doi.org/10.1371/journal.pone.0070274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ann-Katrin K, Paul G, Zoltán S (2019) The nest building test in mice for assessment of general well-being. Methods Mol Biol. https://doi.org/10.1007/978-1-4939-8994-2_7

    Article  Google Scholar 

  42. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:15056. https://doi.org/10.1038/nrdp.2015.56

    Article  PubMed  Google Scholar 

  43. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bloom GS (2014) Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4):505–508. https://doi.org/10.1001/jamaneurol.2013.5847

    Article  PubMed  Google Scholar 

  45. Lee D, Lee G, Yoon DS (2018) Anti-Abeta drug candidates in clinical trials and plasmonic nanoparticle-based drug-screen for Alzheimer’s disease. Analyst 143(10):2204–2212. https://doi.org/10.1039/c7an02013a

    Article  CAS  PubMed  Google Scholar 

  46. Fang X, Zhou X, Miao Y, Han Y, Wei J, Chen T (2020) Therapeutic effect of GLP-1 engineered strain on mice model of Alzheimer’s disease and Parkinson’s disease. AMB Express 10(1):80. https://doi.org/10.1186/s13568-020-01014-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Téglás T, Ábrahám D, Jókai M, Kondo S, Mohammadi R, Fehér J, Szabó D, Wilhelm M, Radák Z (2020) Exercise combined with a probiotics treatment alters the microbiome, but moderately affects signalling pathways in the liver of male APP/PS1 transgenic mice. Biogerontology 21(6):807–815. https://doi.org/10.1007/s10522-020-09895-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patel C, Pande S, Acharya S (2020) Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn Schmiedebergs Arch Pharmacol 393(10):1955–1962. https://doi.org/10.1007/s00210-020-01904-3

    Article  CAS  PubMed  Google Scholar 

  49. Kaur H, Nagamoto-Combs K, Golovko S, Golovko MY, Klug MG, Combs CK (2020) Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer’s disease. Neurobiol Aging 92:114–134. https://doi.org/10.1016/j.neurobiolaging.2020.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dziarski R, Park SY, Kashyap DR, Dowd SE, Gupta D (2016) Pglyrp-regulated gut microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii enhance and Alistipes finegoldii attenuates colitis in mice. PLoS ONE 11(1):e0146162. https://doi.org/10.1371/journal.pone.0146162

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fang Z, Li L, Zhao J, Zhang H, Lee YK, Lu W, Chen W (2019) Bifidobacteria adolescentis regulated immune responses and gut microbial composition to alleviate DNFB-induced atopic dermatitis in mice. Eur J Nutr. https://doi.org/10.1007/s00394-019-02145-8

    Article  PubMed  Google Scholar 

  52. Kong C, Gao R, Yan X, Huang L, Qin H (2019) Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition 60:175–184. https://doi.org/10.1016/j.nut.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  53. Gordon MN, Holcomb LA, Jantzen PT, DiCarlo G, Wilcock D, Boyett KW, Connor K, Melachrino J, O’Callaghan JP, Morgan D (2002) Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse. Exp Neurol 173(2):183–195. https://doi.org/10.1006/exnr.2001.7754

    Article  CAS  PubMed  Google Scholar 

  54. Colpitts SL, Kasper EJ, Keever A, Liljenberg C, Kirby T, Magori K, Kasper LH, Ochoa-Reparaz J (2017) A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes 8(6):561–573. https://doi.org/10.1080/19490976.2017.1353843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712. https://doi.org/10.1038/nrn3346

    Article  CAS  PubMed  Google Scholar 

  56. Aalten P, de Vugt ME, Lousberg R, Korten E, Jaspers N, Senden B, Jolles J, Verhey FR (2003) Behavioral problems in dementia: a factor analysis of the neuropsychiatric inventory. Dement Geriatr Cogn Disord 15(2):99–105. https://doi.org/10.1159/000067972

    Article  PubMed  Google Scholar 

  57. Filali M, Lalonde R (2009) Age-related cognitive decline and nesting behavior in an APPswe/PS1 bigenic model of Alzheimer’s disease. Brain Res 1292:93–99. https://doi.org/10.1016/j.brainres.2009.07.066

    Article  CAS  PubMed  Google Scholar 

  58. Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM (2018) Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 18(1):83–90. https://doi.org/10.1080/14737175.2018.1400909

    Article  CAS  PubMed  Google Scholar 

  59. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J, Fassbender K, Schwiertz A, Schafer KH (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019

    Article  PubMed  Google Scholar 

  60. Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, Ye S, Ye K, Wei D, Song Z, Chen D, Liu J (2019) Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in APP/PS1 transgenic mice. Transl Psychiat. https://doi.org/10.1038/s41398-019-0525-3

    Article  Google Scholar 

  61. Kobayashi Y, Sugahara H, Shimada K, Mitsuyama E, Kuhara T, Yasuoka A, Kondo T, Abe K, Xiao J-z (2017) Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer’s disease. Sci Rep 7(1):13510. https://doi.org/10.1038/s41598-017-13368-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352. https://doi.org/10.1038/nri.2016.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Heping Zhang, Zhihong Sun and all the staff of the Key Laboratory of Dairy Biotechnology and Engineering for critical comments. We thank the Beijing Scitop Bio-tech Co Ltd for providing Probio-M8 strain. We also thank Maojin Yao for his insightful suggestions. We thank Wenliang Lei for his support with experimental apparatus.

Funding

This research was supported by the National Key R&D Program of China (2018YFD0901101); General Program of Natural Science Foundation of Guangdong Province of China (2019A1515012230); Key Research and Development Project of Guangdong Province of China (2019B020210002); Fundamental Research Funds for the Central Universities (2019KZ01); National Natural Science Foundation of China (31671804).

Author information

Authors and Affiliations

Authors

Contributions

JC: investigation, formal analysis, visualization, writing—original draft, writing—review and editing. WKA: writing—original draft, writing—review and editing. CQ: methodology, investigation, visualization. XL: investigation, resources. jm: resources, methodology. JR: conceptualization, funding acquisition, supervision.

Corresponding author

Correspondence to Jiaoyan Ren.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Amakye, W.K., Qi, C. et al. Bifidobacterium Lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer’s disease in the APP/PS1 mouse model. Eur J Nutr 60, 3757–3769 (2021). https://doi.org/10.1007/s00394-021-02543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02543-x

Keywords

Navigation