Skip to main content

Advertisement

Log in

Untargeted plasma metabolomic profiles associated with overall diet in women from the SU.VI.MAX cohort

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Dietary intakes are reflected in plasma by the presence of hundreds of exogenous metabolites and variations in endogenous metabolites. The exploration of diet-related plasma metabolic profiles could help to better understand the impact of overall diet on health. Our aim was to identify metabolomic signatures reflecting overall diet in women from the French general population.

Methods

This cross-sectional study included 160 women in the SU.VI.MAX cohort with detailed dietary data (≥ 10 24-h dietary records) selected according to their level of adherence to the French dietary recommendations, represented by the validated score mPNNS-GS; 80 women from the 10th decile of the score were matched with 80 women from the 1st decile. Plasma metabolomic profiles were acquired using untargeted UPLC-QToF mass spectrometry analysis. The associations between metabolomic profiles and the mPNNG-GS, its components and Principal Component Analyses-derived dietary patterns were investigated using multivariable conditional logistic regression models and partial correlations.

Results

Adherence to the dietary recommendations was positively associated with 3-indolepropionic acid and pipecolic acid (also positively associated with fruit and vegetable intake and a healthy diet)—2 metabolites linked to microbiota and inversely associated with lysophosphatidylcholine (LysoPC(17:1)), acylcarnitine C9:1 (also inversely associated with a healthy diet), acylcarnitine C11:1 and 2-deoxy-D-glucose. Increased plasma levels of piperine and Dihydro4mercapto-3(2H) furanone were observed in women who consumed a Western diet and a healthy diet, respectively. Ethyl-β-D-glucopyranoside was positively associated with alcohol intake. Plasma levels of LysoPC(17:1), cholic acid, phenylalanine-phenylalanine and phenylalanine and carnitine C9:1 decreased with the consumption of vegetable added fat, sweetened food, milk and dairy products and fruit and vegetable intakes, respectively.

Conclusion

This study highlighted several metabolites from both host and microbial metabolism reflecting the long-term impact of the overall diet.

Trial registration

SU.VI.MAX, clinicaltrials.gov NCT00272428. Registered 3 January 2006, https://clinicaltrials.gov/show/NCT00272428

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SU.VI.MAX:

SUpplémentation en Vitamines et Minéraux AntioXydants

mPNNS-GS:

Modified Programme National Nutrition Santé- Guideline Score

UPLC:

Ultrahigh-performance liquid chromatography

LysoPC:

Lysophosphatidylcholine

FFQ:

Food frequency questionnaire

WHO:

World Health Organization

NMR:

Nuclear magnetic resonance

LC–MS:

Liquid chromatography mass spectrometry

PCA:

Principal component analysis

CVD:

Cardiovascular disease

BMI:

Body mass index

HCA:

Hierarchical clustering analysis

OR:

Odds ratios

SD:

Standard deviation

CI:

Confidence interval

FDR:

False discovery rate

BH:

Benjamini-Hochberg

PA:

Pipecolic acid

IPA:

3-Indolepropionic acid

2DG:

2-Deoxy-D-glucose

T2D:

Type 2 diabetes

HEI:

Healthy eating index

aMED:

Alternate mediterranean diet score

HDI:

Healthy diet indicator

BSD:

Baltic Sea diet

References

  1. Jenab M, Slimani N, Bictash M et al (2009) Biomarkers in nutritional epidemiology: applications, needs and new horizons. HumGenet 125:507–525

    Google Scholar 

  2. Kaaks R, Ferrari P, Ciampi A et al (2002) Uses and limitations of statistical accounting for random error correlations, in the validation of dietary questionnaire assessments. Public Health Nutr 5:969–976

    Article  Google Scholar 

  3. Sugar EA, Wang C-Y, Prentice RL (2007) Logistic regression with exposure biomarkers and flexible measurement error. Biometrics 63:143–151. https://doi.org/10.1111/j.1541-0420.2006.00632.x

    Article  PubMed  Google Scholar 

  4. Day N, McKeown N, Wong M et al (2001) Epidemiological assessment of diet: a comparison of a 7-day diary with a food frequency questionnaire using urinary markers of nitrogen, potassium and sodium. Int J Epidemiol 30:309–317. https://doi.org/10.1093/ije/30.2.309

    Article  CAS  PubMed  Google Scholar 

  5. Dragsted LO, Gao Q, Scalbert A et al (2018) Validation of biomarkers of food intake-critical assessment of candidate biomarkers. Genes Nutr 13:14. https://doi.org/10.1186/s12263-018-0603-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Freedman LS, Tasevska N, Kipnis V et al (2010) Gains in statistical power from using a dietary biomarker in combination with self-reported intake to strengthen the analysis of a diet-disease association: an example from CAREDS. Am J Epidemiol 172:836–842. https://doi.org/10.1093/aje/kwq194

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jones DP, Park Y, Ziegler TR (2012) Nutritional metabolomics: progress in addressing complexity in diet and health. Annu Rev Nutr 32:183–202. https://doi.org/10.1146/annurev-nutr-072610-145159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. González-Peña D, Brennan L (2019) Recent advances in the application of metabolomics for nutrition and health. Annu Rev Food Sci Technol 10:479–519. https://doi.org/10.1146/annurev-food-032818-121715

    Article  CAS  PubMed  Google Scholar 

  9. Playdon MC, Sampson JN, Cross AJ et al (2016) Comparing metabolite profiles of habitual diet in serum and urine. Am J Clin Nutr 104:776–789. https://doi.org/10.3945/ajcn.116.135301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guertin KA, Moore SC, Sampson JN et al (2014) Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. AmJClinNutr 100:208–217

    CAS  Google Scholar 

  11. Cespedes EM, Hu FB (2015) Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am J Clin Nutr 101:899–900. https://doi.org/10.3945/ajcn.115.110213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization (WHO) (2017) Guideline: dietary patterns. WHO, Geneva, Switzerland

    Google Scholar 

  13. Brennan L (2017) Metabolomics: a tool to aid dietary assessment in nutrition. Curr Opin Food Sci 16:96–99. https://doi.org/10.1016/j.cofs.2017.09.003

    Article  Google Scholar 

  14. Garcia-Perez I, Posma JM, Gibson R et al (2017) Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. Lancet Diabetes Endocrinol 5:184–195. https://doi.org/10.1016/S2213-8587(16)30419-3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bondia-Pons I, Martinez JA, de la Iglesia R et al (2015) Effects of short- and long-term Mediterranean-based dietary treatment on plasma LC-QTOF/MS metabolic profiling of subjects with metabolic syndrome features: the metabolic syndrome reduction in Navarra (RESMENA) randomized controlled trial. Mol Nutr Food Res 59:711–728. https://doi.org/10.1002/mnfr.201400309

    Article  CAS  PubMed  Google Scholar 

  16. Andersen MB, Rinnan A, Manach C et al (2014) Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. JProteomeRes 13:1405–1418

    CAS  Google Scholar 

  17. Acar E, Gürdeniz G, Khakimov B et al (2019) Biomarkers of individual foods, and separation of diets using untargeted LC-MS-based plasma metabolomics in a randomized controlled trial. Mol Nutr Food Res 63:1800215. https://doi.org/10.1002/mnfr.201800215

    Article  CAS  Google Scholar 

  18. Vázquez-Fresno R, Llorach R, Urpi-Sarda M et al (2015) Metabolomic pattern analysis after mediterranean diet intervention in a nondiabetic population: a 1- and 3-year follow-up in the PREDIMED study. J Proteome Res 14:531–540. https://doi.org/10.1021/pr5007894

    Article  CAS  PubMed  Google Scholar 

  19. Hanhineva K, Lankinen MA, Pedret A et al (2015) Nontargeted metabolite profiling discriminates diet-specific biomarkers for consumption of whole grains, fatty fish, and bilberries in a randomized controlled trial. J Nutr 145:7–17. https://doi.org/10.3945/jn.114.196840

    Article  CAS  PubMed  Google Scholar 

  20. Lankinen M, Kolehmainen M, Jääskeläinen T et al (2014) Effects of whole grain, fish and bilberries on serum metabolic profile and lipid transfer protein activities: a randomized trial (Sysdimet). PLoS ONE 9:e90352. https://doi.org/10.1371/journal.pone.0090352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stella C, Beckwith-Hall B, Cloarec O et al (2006) Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res 5:2780–2788. https://doi.org/10.1021/pr060265y

    Article  CAS  PubMed  Google Scholar 

  22. Esko T, Hirschhorn JN, Feldman HA et al (2017) Metabolomic profiles as reliable biomarkers of dietary composition. Am J Clin Nutr 105:547–554. https://doi.org/10.3945/ajcn.116.144428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peré-Trepat E, Ross AB, Martin F-P et al (2010) Chemometric strategies to assess metabonomic imprinting of food habits in epidemiological studies. Chemom Intell Lab Syst 104:95–100. https://doi.org/10.1016/j.chemolab.2010.06.001

    Article  CAS  Google Scholar 

  24. Altmaier E, Kastenmüller G, Römisch-Margl W et al (2011) Questionnaire-based self-reported nutrition habits associate with serum metabolism as revealed by quantitative targeted metabolomics. Eur J Epidemiol 26:145–156. https://doi.org/10.1007/s10654-010-9524-7

    Article  PubMed  Google Scholar 

  25. Merz B, Frommherz L, Rist MJ et al (2018) Dietary pattern and plasma BCAA-variations in healthy men and women-results from the KarMeN study. Nutrients. https://doi.org/10.3390/nu10050623

    Article  PubMed  PubMed Central  Google Scholar 

  26. Floegel A, von Ruesten A, Drogan D et al (2013) Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam. Eur J Clin Nutr 67:1100–1108. https://doi.org/10.1038/ejcn.2013.147

    Article  CAS  PubMed  Google Scholar 

  27. Bouchard-Mercier A, Rudkowska I, Lemieux S et al (2013) The metabolic signature associated with the Western dietary pattern: a cross-sectional study. Nutr J 12:158. https://doi.org/10.1186/1475-2891-12-158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Almanza-Aguilera E, Urpi-Sarda M, Llorach R et al (2017) Microbial metabolites are associated with a high adherence to a Mediterranean dietary pattern using a 1H-NMR-based untargeted metabolomics approach. J Nutr Biochem 48:36–43. https://doi.org/10.1016/j.jnutbio.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  29. Playdon MC, Moore SC, Derkach A et al (2017) Identifying biomarkers of dietary patterns by using metabolomics. Am J Clin Nutr 105:450–465. https://doi.org/10.3945/ajcn.116.144501

    Article  CAS  PubMed  Google Scholar 

  30. O’Sullivan A, Gibney MJ, Brennan L (2011) Dietary intake patterns are reflected in metabolomiprofilesc: potential role in dietary assessment studies. AmJClinNutr 93:314–321

    Google Scholar 

  31. Xu J, Yang S, Cai S et al (2010) Identification of biochemical changes in lactovegetarian urine using 1H NMR spectroscopy and pattern recognition. Anal Bioanal Chem 396:1451–1463. https://doi.org/10.1007/s00216-009-3338-z

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt JA, Rinaldi S, Ferrari P et al (2015) Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort. Am J Clin Nutr 102:1518–1526. https://doi.org/10.3945/ajcn.115.111989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Menni C, Zhai G, Macgregor A et al (2013) Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. Metab Off J Metab Soc 9:506–514. https://doi.org/10.1007/s11306-012-0469-6

    Article  CAS  Google Scholar 

  34. Bhupathiraju SN, Guasch-Ferré M, Gadgil MD et al (2018) Dietary patterns among Asian Indians living in the United States have distinct metabolomic profiles that are associated with cardiometabolic risk. J Nutr. https://doi.org/10.1093/jn/nxy074

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wei R, Ross AB, Su M et al (2018) Metabotypes related to meat and vegetable intake reflect microbial, lipid and amino acid metabolism in healthy people. Mol Nutr Food Res 62:1800583. https://doi.org/10.1002/mnfr.201800583

    Article  CAS  Google Scholar 

  36. Gibbons H, Carr E, McNulty BA et al (2017) Metabolomic-based identification of clusters that reflect dietary patterns. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201601050

    Article  PubMed  Google Scholar 

  37. Sedlmeier A, Kluttig A, Giegling I et al (2018) The human metabolic profile reflects macro- and micronutrient intake distinctly according to fasting time. Sci Rep. https://doi.org/10.1038/s41598-018-30764-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Guasch-Ferré M, Bhupathiraju SN, Hu FB (2018) Use of metabolomics in improving assessment of dietary intake. Clin Chem 64:82–98. https://doi.org/10.1373/clinchem.2017.272344

    Article  CAS  PubMed  Google Scholar 

  39. Hercberg S, Galan P, Preziosi P et al (2004) The SU.VI.MAX study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. ArchInternMed 164:2335–2342

    CAS  Google Scholar 

  40. Hercberg S, Preziosi P, Briancon S et al (1998) A primary prevention trial using nutritional doses of antioxidant vitamins and minerals in cardiovascular diseases and cancers in a general population: the SU.VI.MAX study–design, methods, and participant characteristics. SUpplementation en VItamines et Mineraux AntioXydants. Control ClinTrials 19:336–351

    CAS  Google Scholar 

  41. Le Moullec N, Deheeger M, Preziosi P et al (1996) Validation du manuel photos utilisé pour l’enquête alimentaire de l’étude SU.VI.MAX (Validation of the food portion size booklet used in the SU.VI.MAX study). CahNutrDiet 31:158–164

    Google Scholar 

  42. Hercberg S (2005) Table de Composition SU.VI.MAX des Aliments. Les éditions INSERM/Economica, Paris

  43. Lécuyer L, Dalle C, Lyan B et al (2019) Plasma metabolomic signatures associated with long-term breast cancer risk in the SU.VI.MAX prospective cohort. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. https://doi.org/10.1158/1055-9965.EPI-19-0154

  44. Lécuyer L, Victor Bala A, Deschasaux M et al (2018) NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer. Int J Epidemiol 47:484–494. https://doi.org/10.1093/ije/dyx271

    Article  PubMed  Google Scholar 

  45. Lécuyer L, Dalle C, Lefevre-Arbogast S, et al (2019) Diet-related metabolomic signature of long-term breast cancer risk using penalized regression: an exploratory study in the SU.VI.MAX cohort. Cancer Epidemiol Biomarkers Prev cebp.0900.2019. https://doi.org/10.1158/1055-9965.EPI-19-0900

  46. Estaquio C, Kesse-Guyot E, Deschamps V et al (2009) Adherence to the French programme national nutrition Sante guideline score is associated with better nutrient intake and nutritional status. JAmDiet Assoc 109:1031–1041

    Google Scholar 

  47. Kesse-Guyot E, Touvier M, Henegar A et al (2011) Higher adherence to French dietary guidelines and chronic diseases in the prospective SU.VI.MAX cohort. EurJ ClinNutr 65:887–894

    CAS  Google Scholar 

  48. Lassale C, Galan P, Julia C et al (2013) Association between adherence to nutritional guidelines, the metabolic syndrome and adiposity markers in a French adult general population. PLoS ONE 8:e76349. https://doi.org/10.1371/journal.pone.0076349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lassale C, Fezeu L, Andreeva VA et al (2005) (2012) Association between dietary scores and 13-year weight change and obesity risk in a French prospective cohort. Int J Obes 36:1455–1462. https://doi.org/10.1038/ijo.2011.264

    Article  CAS  Google Scholar 

  50. Lavalette C, Adjibade M, Srour B et al (2018) Cancer-specific and general nutritional scores and cancer risk: results from the prospective NutriNet-Santé cohort. Cancer Res 78:4427–4435. https://doi.org/10.1158/0008-5472.CAN-18-0155

    Article  CAS  PubMed  Google Scholar 

  51. Pereira F, Martin JF, Joly C et al (2010) Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma. Metabolomics 6:207–218

    Article  CAS  Google Scholar 

  52. Giacomoni F, Le Corguille G, Monsoor M et al (2015) Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31:1493–1495. https://doi.org/10.1093/bioinformatics/btu813

    Article  CAS  PubMed  Google Scholar 

  53. Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis: chemical analysis working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211–221. https://doi.org/10.1007/s11306-007-0082-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cattell RB (1966) The scree test for the number of factors. Multivar BehavRes 1:245–276

    Article  CAS  Google Scholar 

  55. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  56. Fiedler K, Kutzner F, Krueger JI (2012) The long way from α-error control to validity proper: problems with a short-sighted false-positive debate. Perspect Psychol Sci 7:661–669. https://doi.org/10.1177/1745691612462587

    Article  PubMed  Google Scholar 

  57. Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr Protoc Bioinforma 55:14.10.1–14.10.91. https://doi.org/10.1002/cpbi.11

  58. Fujita T, Hada T, Higashino K (1999) Origin of D- and L-pipecolic acid in human physiological fluids: a study of the catabolic mechanism to pipecolic acid using the lysine loading test. Clin Chim Acta Int J Clin Chem 287:145–156

    Article  CAS  Google Scholar 

  59. Perera T, Young MR, Zhang Z et al (2015) Identification and monitoring of metabolite markers of dry bean consumption in parallel human and mouse studies. Mol Nutr Food Res 59:795–806. https://doi.org/10.1002/mnfr.201400847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fukai K, Harada S, Iida M et al (2016) Metabolic Profiling of Total Physical Activity and Sedentary Behavior in Community-Dwelling Men. PLoS ONE 11:e0164877. https://doi.org/10.1371/journal.pone.0164877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao Q, Shen H, Su K-J, et al (2018) A joint analysis of metabolomic profiles associated with muscle mass and strength in Caucasian women. Aging 10:2624–2635. https://doi.org/10.18632/aging.101574

  62. Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci 106:3698–3703. https://doi.org/10.1073/pnas.0812874106

    Article  PubMed  Google Scholar 

  63. de Mello VD, Paananen J, Lindström J et al (2017) Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep. https://doi.org/10.1038/srep46337

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tuomainen M, Lindström J, Lehtonen M et al (2018) Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes. https://doi.org/10.1038/s41387-018-0046-9

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jennis M, Cavanaugh CR, Leo GC et al (2018) Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil 30:e13178. https://doi.org/10.1111/nmo.13178

    Article  CAS  Google Scholar 

  66. Abildgaard A, Elfving B, Hokland M et al (2018) The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour. Arch Physiol Biochem 124:306–312. https://doi.org/10.1080/13813455.2017.1398262

    Article  CAS  PubMed  Google Scholar 

  67. Pallister T, Jennings A, Mohney RP et al (2016) Characterizing blood metabolomics profiles associated with self-reported food intakes in female twins. PLoS ONE 11:e0158568. https://doi.org/10.1371/journal.pone.0158568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eggersdorfer M, Wyss A (2018) Carotenoids in human nutrition and health. Arch Biochem Biophys 652:18–26. https://doi.org/10.1016/j.abb.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  69. Tomás-Barberán FA, Selma MV, Espín JC (2016) Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 19:471–476. https://doi.org/10.1097/MCO.0000000000000314

    Article  CAS  PubMed  Google Scholar 

  70. Steiber A, Kerner J, Hoppel CL (2004) Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med 25:455–473. https://doi.org/10.1016/j.mam.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  71. Scalbert A, Brennan L, Manach C et al (2014) The food metabolome: a window over dietary exposure. AmJClinNutr 99:1286–1308

    CAS  Google Scholar 

  72. Shi L, Brunius C, Johansson I et al (2018) Plasma metabolites associated with healthy Nordic dietary indexes and risk of type 2 diabetes-a nested case-control study in a Swedish population. Am J Clin Nutr 108:564–575. https://doi.org/10.1093/ajcn/nqy145

    Article  PubMed  PubMed Central  Google Scholar 

  73. Carayol M, Licaj I, Achaintre D et al (2015) Reliability of serum metabolites over a two-year period: a targeted metabolomic approach in fasting and non-fasting samples from EPIC. PLoSOne 10:e0135437

    Article  Google Scholar 

  74. Floegel A, Drogan D, Wang-Sattler R et al (2011) Reliability of serum metabolite concentrations over a 4-month period using a targeted metabolomic approach. PLoS ONE 6:e21103

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Younes Esseddik, Frédéric Coffinieres, Thi Hong Van Duong, Paul Flanzy, Régis Gatibelza, Jagatjit Mohinder and Maithyly Sivapalan (computer scientists), Rachida Mehroug and Frédérique Ferrat (logistic assistants), Nathalie Arnault, Véronique Gourlet, PhD, Fabien Szabo, PhD, Julien Allegre, and Laurent Bourhis (data-manager/statisticians) and Cédric Agaesse (dietitian) for their technical contribution to the SU.VI.MAX study. We also thank all participants of the SU.VI.MAX study. This work was conducted in the framework of the French network for Nutrition And Cancer Research (NACRe network), www.inra.fr/nacre and received the NACRe Partnership Label. Metabolomic analyses were performed within the metaboHUB French infrastructure (ANR-INBS-0010).

Funding

This work was supported by the French National Cancer Institute [Grant number INCa_8085 for the project, and PhD Grant number INCa_11323 for L. Lecuyer]; the Federative Institute for Biomedical Research IFRB Paris 13; and the Cancéropôle Ile-de-France/Région Ile-de-France [PhD Grant for M. Deschasaux]. The funders had no role in the design, analysis, or writing of this article.

Author information

Authors and Affiliations

Authors

Contributions

The author’s responsibilities were as follow CM and MT: designed the research and supervised data interpretation; LL and CD conducted the research; SH, PG, MT, EKG: conducted the SU.VI.MAX cohort and provided essential data and samples; DC, ML, SD, BL and EPG: performed metabolomic analyses; LL, CD and PM: performed statistical analysis; MT, CM, MP: supervised statistical analysis; LL, MT, CD, CM and EPG: wrote the paper; all authors provided critical intellectual input for data interpretation, read and approved the final manuscript; CM and MT had primary responsibility for final content.

Corresponding author

Correspondence to Lucie Lécuyer.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose and the funders had no role in the design, analysis, or writing of this article.

Ethical approval

The study was conducted according to the guidelines laid down in the Declaration of Helsinki and approved by the Ethics Committee for Studies with Human Subjects of Paris-Cochin Hospital (CCPPRB 706/2364) and the ‘Commission Nationale de l’Informatique et des Libertés’ (CNIL 334641/907094). All subjects gave written informed consent to participate in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

394_2020_2177_MOESM1_ESM.docx

Supplementary file1 Loadings values of the a posteriori 3 dietary patterns derived by Principal Component Analysis (DOCX 27 kb)

Supplementary file2 Description and computation of mPNNS-GS (DOCX 31 kb)

Supplementary file3 Methods for MS metabolomic analysis (DOCX 103 kb)

394_2020_2177_MOESM4_ESM.docx

Supplementary file4 Identified metabolites associated with baseline clinical and biological parameters and nutrients intakes from Spearman correlation analyses (DOCX 58 kb)

394_2020_2177_MOESM5_ESM.docx

Supplementary file5 Associations between ions and the level of adherence to the French dietary recommendations, as measured by the a priori mPNNS-GS from multivariable conditional logistic regression (DOCX 50 kb)

394_2020_2177_MOESM6_ESM.docx

Supplementary file6 Associations between ions and components of the a priori mPNNS-GS from spearman correlation analyses (DOCX 363 kb)

394_2020_2177_MOESM7_ESM.docx

Supplementary file7 Associations between ions and a posteriori dietary patterns derived by principal component analysis from spearman correlation analyses (DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lécuyer, L., Dalle, C., Micheau, P. et al. Untargeted plasma metabolomic profiles associated with overall diet in women from the SU.VI.MAX cohort. Eur J Nutr 59, 3425–3439 (2020). https://doi.org/10.1007/s00394-020-02177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02177-5

Keywords

Navigation