Skip to main content
Log in

Questionnaire-based self-reported nutrition habits associate with serum metabolism as revealed by quantitative targeted metabolomics

  • Nutritional Epidemiology
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Nutrition plays an important role in human metabolism and health. However, it is unclear in how far self-reported nutrition intake reflects de facto differences in body metabolite composition. To investigate this question on an epidemiological scale we conducted a metabolomics study analyzing the association of self-reported nutrition habits with 363 metabolites quantified in blood serum of 284 male participants of the KORA population study, aged between 55 and 79 years. Using data from an 18-item food frequency questionnaire, the consumption of 18 different food groups as well as four derived nutrition indices summarizing these food groups by their nutrient content were analyzed for association with the measured metabolites. The self-reported nutrition intake index “polyunsaturated fatty acids” associates with a decrease in saturation of the fatty acid chains of glycero-phosphatidylcholines analyzed in serum samples. Using a principal component analysis dietary patterns highly associating with serum metabolite concentrations could be identified. The first principal component, which was interpreted as a healthy nutrition lifestyle, associates with a decrease in the degree of saturation of the fatty acid moieties of different glycero-phosphatidylcholines. In summary, this analysis shows that on a population level metabolomics provides the possibility to link self-reported nutrition habits to changes in human metabolic profiles and that the associating metabolites reflect the self-reported nutritional intake. Moreover, we could show that the strength of association increases when composed nutrition indices are used. Metabolomics may, thus, facilitate evaluating questionnaires and improving future questionnaire-based epidemiological studies on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

KORA:

Cooperative Health Research in the Region of Augsburg

MONICA:

Monitoring of Trends and Determinants in Cardiovascular Disease

DP:

Dietary pattern

References

  1. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45.

    Article  CAS  PubMed  Google Scholar 

  2. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39(7):857–64.

    Article  CAS  PubMed  Google Scholar 

  3. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–53.

    Article  CAS  PubMed  Google Scholar 

  4. Norat T, Bingham S, Ferrari P, Slimani N, Jenab M, Mazuir M, et al. Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst. 2005;97(12):906–16.

    Article  PubMed  Google Scholar 

  5. Van Dorsten FA, Daykin CA, Mulder TP, Van Duynhoven JP. Metabonomics approach to determine metabolic differences between green tea and black tea consumption. J Agric Food Chem. 2006;54(18):6929–38.

    Article  PubMed  Google Scholar 

  6. Walsh MC, Brennan L, Pujos-Guillot E, Sebedio JL, Scalbert A, Fagan A, et al. Influence of acute phytochemical intake on human urinary metabolomic profiles. Am J Clin Nutr. 2007;86(6):1687–93.

    CAS  PubMed  Google Scholar 

  7. Solanky KS, Bailey NJ, Beckwith-Hall BM, Bingham S, Davis A, Holmes E, et al. Biofluid 1H NMR-based metabonomic techniques in nutrition research—metabolic effects of dietary isoflavones in humans. J Nutr Biochem. 2005;16(4):236–44.

    Article  CAS  PubMed  Google Scholar 

  8. Kimura Y, Kono S, Toyomura K, Nagano J, Mizoue T, Moore MA, et al. Meat, fish and fat intake in relation to subsite-specific risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci. 2007;98(4):590–7.

    Article  CAS  PubMed  Google Scholar 

  9. Chao A, Thun MJ, Connell CJ, McCullough ML, Jacobs EJ, Flanders WD, et al. Meat consumption and risk of colorectal cancer. JAMA. 2005;293(2):172–82.

    Article  CAS  PubMed  Google Scholar 

  10. Cross AJ, Leitzmann MF, Gail MH, Hollenbeck AR, Schatzkin A, Sinha R. A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med. 2007;4(12):e325.

    Article  PubMed  Google Scholar 

  11. Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, et al. Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res. 2006;5(10):2780–8.

    Article  CAS  PubMed  Google Scholar 

  12. Gieger C, Geistlinger L, Altmaier E, Hrabe de Angelis M, Kronenberg F, Meitinger T, et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008;4(11):e1000282.

    Article  PubMed  Google Scholar 

  13. Altmaier E, Ramsay SL, Graber A, Mewes HW, Weinberger KM, Suhre K. Bioinformatics analysis of targeted metabolomics—uncovering old and new tales of diabetic mice under medication. Endocrinology. 2008;149(7):3478–89.

    Article  CAS  PubMed  Google Scholar 

  14. Wang-Sattler R, Yu Y, Mittelstrass K, Lattka E, Altmaier E, Gieger C, et al. Metabolic profiling reveals distinct variations linked to nicotine consumption in humans—first results from the KORA study. PLoS One. 2008;3(12):e3863.

    Article  PubMed  Google Scholar 

  15. Altmaier E, Kastenmuller G, Romisch-Margl W, Thorand B, Weinberger KM, Adamski J, et al. Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. Mol Nutr Food Res. 2009;53:1357–65.

    Article  CAS  PubMed  Google Scholar 

  16. Dowell SA, Welch JL. Use of electronic self-monitoring for food and fluid intake: a pilot study. Nephrol Nurs J. 2006;33(3):271–7.

    PubMed  Google Scholar 

  17. Kikunaga S, Tin T, Ishibashi G, Wang DH, Kira S. The application of a handheld personal digital assistant with camera and mobile phone card (Wellnavi) to the general population in a dietary survey. J Nutr Sci Vitaminol (Tokyo). 2007;53(2):109–16.

    Article  CAS  Google Scholar 

  18. Subar AF, Thompson FE, Potischman N, Forsyth BH, Buday R, Richards D, et al. Formative research of a quick list for an automated self-administered 24-h dietary recall. J Am Diet Assoc. 2007;107(6):1002–7.

    Article  PubMed  Google Scholar 

  19. Slimani N, Valsta L. Perspectives of using the EPIC-SOFT programme in the context of pan-European nutritional monitoring surveys: methodological and practical implications. Eur J Clin Nutr. 2002;56(Suppl 2):S63–74.

    Article  PubMed  Google Scholar 

  20. Wang DH, Kogashiwa M, Kira S. Development of a new instrument for evaluating individuals’ dietary intakes. J Am Diet Assoc. 2006;106(10):1588–93.

    Article  PubMed  Google Scholar 

  21. Michels KB. The role of nutrition in cancer development and prevention. Int J Cancer. 2005;114(2):163–5.

    Article  CAS  PubMed  Google Scholar 

  22. Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA. Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet. 2009;125(5–6):507–25.

    Article  PubMed  Google Scholar 

  23. Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  24. Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med. 2004;164(20):2235–40.

    Article  PubMed  Google Scholar 

  25. Liu L, Nettleton JA, Bertoni AG, Bluemke DA, Lima JA, Szklo M. Dietary pattern, the metabolic syndrome, and left ventricular mass and systolic function: the Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr. 2009;90:362–8.

    Article  CAS  PubMed  Google Scholar 

  26. Winkler G, Doring A. Validation of a short qualitative food frequency list used in several German large scale surveys. Z Ernahrungswiss. 1998;37(3):234–41.

    CAS  PubMed  Google Scholar 

  27. Weinberger KM. Metabolomics in diagnosing metabolic diseases. Ther Umsch. 2008;65(9):487–91.

    Article  PubMed  Google Scholar 

  28. Weinberger KM, Graber A. Using comprehensive metabolomics to identify novel biomarkers. Screen Trends Drug Discov. 2005;6:42–5.

    Google Scholar 

  29. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4(7):594–610.

    Article  CAS  PubMed  Google Scholar 

  30. Storey JD. The positive false discovery rate: a Bayesian interpretation and the q value. Ann Stat. 2003;31(6):2013–35.

    Article  Google Scholar 

  31. Sprecher H, Luthria DL, Mohammed BS, Baykousheva SP. Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res. 1995;36(12):2471–7.

    CAS  PubMed  Google Scholar 

  32. Winkler G, Doring A, Keil U. Trends in dietary sources of nutrients among middle-aged men in southern Germany. Results of the MONICA project Augsburg: dietary surveys 1984/1985 and 1994/1995. Monitoring trends and determinants in cardiovascular disease. Appetite. 2000;34(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  33. Rubba P, Fidanza F, Gautiero G, Leccia G, Cozzolino G, Mancini M. Influence of dietary intake of energy and carbohydrate on the proportion of saturated and monounsaturated fatty acids in adipose tissue of middle aged men. Int J Vitam Nutr Res. 1990;60(4):383–91.

    CAS  PubMed  Google Scholar 

  34. Day N, McKeown N, Wong M, Welch A, Bingham S. Epidemiological assessment of diet: a comparison of a 7-day diary with a food frequency questionnaire using urinary markers of nitrogen, potassium and sodium. Int J Epidemiol. 2001;30(2):309–17.

    Article  CAS  PubMed  Google Scholar 

  35. Kaaks R, Ferrari P, Ciampi A, Plummer M, Riboli E. Uses and limitations of statistical accounting for random error correlations, in the validation of dietary questionnaire assessments. Public Health Nutr. 2002;5(6A):969–76.

    Article  PubMed  Google Scholar 

  36. Sugar EA, Wang CY, Prentice RL. Logistic regression with exposure biomarkers and flexible measurement error. Biometrics. 2007;63(1):143–51.

    Article  PubMed  Google Scholar 

  37. Bingham SA. Biomarkers in nutritional epidemiology. Public Health Nutr. 2002;5(6A):821–7.

    Article  PubMed  Google Scholar 

  38. Potischman N, Freudenheim JL. Biomarkers of nutritional exposure and nutritional status: an overview. J Nutr. 2003;133(Suppl 3):873S–4S.

    CAS  PubMed  Google Scholar 

  39. Tasevska N, Runswick SA, McTaggart A, Bingham SA. Urinary sucrose and fructose as biomarkers for sugar consumption. Cancer Epidemiol Biomarkers Prev. 2005;14(5):1287–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The KORA research platform and the MONICA Augsburg studies were initiated and financed by the Helmholtz Zentrum München—National Research Center for Environmental Health, which is funded by the German Federal Ministry of Education, Science, Research and Technology and by the State of Bavaria. The KORA study group consists of H.-E. Wichmann (speaker), R. Holle, J. John, T. Illig, C. Meisinger, A. Peters, and their coworkers, who are responsible for the design and conduct of the KORA studies. We gratefully acknowledge the contribution of all members of field staffs who were involved in planning and conducting the MONICA/KORA Augsburg studies. Finally, we express our appreciation to all study participants for donating their blood and time. This work was partially funded by the Federal Ministry of Education and Research within the SysMBo project (project number: 0315494A), by the research consortium GANI_MED (project number: 03IS2061A) and by the Deutsches Zentrum für Diabetesforschung e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Altmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altmaier, E., Kastenmüller, G., Römisch-Margl, W. et al. Questionnaire-based self-reported nutrition habits associate with serum metabolism as revealed by quantitative targeted metabolomics. Eur J Epidemiol 26, 145–156 (2011). https://doi.org/10.1007/s10654-010-9524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-010-9524-7

Keywords

Navigation