Skip to main content
Log in

Aspartate attenuates intestinal injury and inhibits TLR4 and NODs/NF-κB and p38 signaling in weaned pigs after LPS challenge

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

This study was conducted to investigate whether aspartate (Asp) could alleviate Escherichia coli lipopolysaccharide (LPS)-induced intestinal injury by modulating intestine inflammatory response.

Methods

Twenty-four weaned piglets were divided into four treatments: (1) non-challenged control; (2) LPS-challenged control; (3) LPS + 0.5 % Asp; and (4) LPS + 1.0 % Asp. After feeding with control, 0.5 or 1.0 % Asp-supplemented diets for 21 days, pigs were injected intraperitoneally with saline or LPS. At 4 h postinjection, blood and intestine samples were obtained.

Results

Asp supplementation to LPS-challenged pigs improved intestinal morphology, indicated by higher jejunal and ileal villus height/crypt depth ratio and lower ileal crypt depth linearly or quadratically. Asp also improved intestinal barrier function, indicated by increased jejunal and ileal diamine oxidase activities as well as enhanced protein expression of jejunal claudin-1 linearly or quadratically. In addition, Asp decreased plasma, jejunal and ileal tumor necrosis factor-α concentration and ileal caspase-3 protein expression linearly and quadratically. Moreover, Asp down-regulated the mRNA expression of toll-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain protein (NOD) signaling-related genes, nuclear factor-κB (NF-κB) p65 and p38, decreased phosphorylation of jejunal p38, and increased phosphorylation of ileal extracellular signal-related kinase 1/2 linearly or quadratically. Finally, Asp increased mRNA expressions of TLR4 and NOD signaling negative regulators including radioprotective 105, suppressor of cytokine signaling 1, toll-interacting protein, Erbb2 interacting protein and centaurin β1 linearly or quadratically.

Conclusions

These results indicate that Asp supplementation is associated with inhibition of TLR4 and NODs/NF-κB and p38 signaling pathways and concomitant improvement of intestinal integrity under an inflammatory condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J (2007) Restoration of barrier function in injured intestinal mucosa. Physiol Rev 87:545–564

    Article  CAS  Google Scholar 

  2. Mitsui T, Fukatsu K, Yanagawa M, Amenomori S, Ogawa E, Fukuda T, Murakoshi S, Moriya T, Yasuhara H, Seto Y (2014) Truncal vagotomy temporarily decreases the pro- and anti-inflammatory cytokine levels in the small intestine. Surg Today 44:1123–1127

    Article  CAS  Google Scholar 

  3. Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin Y (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  4. Flynn NE, Knabe DA, Mallick BK, Wu G (2000) Postnatal changes of plasma amino acids in suckling pigs. J Anim Sci 78:2369–2375

    Article  CAS  Google Scholar 

  5. Pi D, Liu Y, Shi H, Li S, Odle J, Lin X, Zhu H, Chen F, Hou Y, Leng W (2014) Dietary supplementation of Aspartate enhances intestinal integrity and energy status in weanling piglets after lipopolysaccharide challenge. J Nutr Biochem 25:456–462

    Article  CAS  Google Scholar 

  6. Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  CAS  Google Scholar 

  7. Wu GY, Brosnan JT (1992) Macrophages can convert citrulline into arginine. Biochem J 281:45–48

    Article  CAS  Google Scholar 

  8. Sukhotnik I, Helou H, Mogilner J, Lurie M, Bernsteyn A, Coran AG, Shiloni E (2005) Oral arginine improves intestinal recovery following ischemia-reperfusion injury in rat. Pediatr Surg Int 21:191–196

    Article  Google Scholar 

  9. Zhou X, Wu X, Yin Y, Zhang C, He L (2012) Preventive oral supplementation with glutamine and arginine has beneficial effects on the intestinal mucosa and inflammatory cytokines in endotoxemic rats. Amino Acids 43:813–821

    Article  CAS  Google Scholar 

  10. Fukata M, Vamadevan AS, Abreu MT (2009) Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol 21:242–253

    Article  CAS  Google Scholar 

  11. Uddin MJ, Kaewmala K, Tesfaye D, Tholen E, Looft C, Hoelker M, Schellander K, Cinar MU (2013) Expression patterns of porcine Toll-like receptors family set of genes (TLR1-10) in gut-associated lymphoid tissues alter with age. Res Vet Sci 95:92–102

    Article  CAS  Google Scholar 

  12. Parlato M, Yeretssian G (2014) NOD-like receptors in intestinal homeostasis and epithelial tissue repair. Int J Mol Sci 15:9594–9627

    Article  CAS  Google Scholar 

  13. Becker CE, O’Neill LA (2007) Inflammasomes in inflammatory disorders: the role of TLRs and their interactions with NLRs. Semin Immunopathol 29:239–248

    Article  CAS  Google Scholar 

  14. Xu Y, Liu XD, Gong X, Eissa NT (2008) Signaling pathway of autophagy associated with innate immunity. Autophagy 4:110–112

    Article  CAS  Google Scholar 

  15. Inohara Chamaillard, McDonald C, Nuñez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383

    Article  CAS  Google Scholar 

  16. Doyle A, Zhang G, Abdel Fattah EA, Eissa NT, Li YP (2011) Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J 25:99–110

    Article  CAS  Google Scholar 

  17. Liu Y, Huang J, Hou Y, Zhu H, Zhao S, Ding B, Yin Y, Yi G, Shi J, Fan W (2008) Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br J Nutr 100:552–560

    Article  CAS  Google Scholar 

  18. Mair KH, Sedlak C, Käser T, Pasternak A, Levast B, Gerner W, Saalmüller A, Summerfield A, Gerdts V, Wilson HL, Meurens F (2014) The porcine innate immune system: an update. Dev Comp Immunol 45:321–343

    Article  CAS  Google Scholar 

  19. NRC (1998) Nutrient requirements of swine. 10th edn. National Academic Press, Washington

  20. Shi HF, Liu YL, Li S, Zhu HL, Cheng F, Hou YQ, Ding BY, Pi DA, Leng WB (2013) Effect of Aspartic acid on growth performance, blood cell differential count, and blood biochemical measurements of weaned piglets after lipopolysaccharide challenge. China J Anim Sci 7:38–43

    Google Scholar 

  21. Liu YL, Li DF, Gong LM, Yi GF, Gaines AM, Carroll JA (2003) Effects of fish oil supplementation on the performance and the immunological, adrenal, and somatotropic responses of weaned pigs after an Escherichia coli lipopolysaccharide challenge. J Anim Sci 81:2758–2765

    Article  CAS  Google Scholar 

  22. Mercer DW, Smith GS, Cross JM, Russell DH, Chang L, Cacioppo J (1996) Effects of lipopolysaccharide on intestinal injury: potential role of nitricoxide and lipid peroxidation. J Surg Res 63:185–192

    Article  CAS  Google Scholar 

  23. Luna LG (1968) Manual of histologic staining methods of the armed forces institute of pathology. In: McGraw-Hill Book Company, 3rd edn. New York, pp 258

  24. Liu YL, Han J, Huang JJ, Wang XQ, Wang FL, Wang JJ (2009) Dietary l-arginine supplementation improves intestinal function in weaned pigs after an Escherichia coli lipopolysaccharide challenge. Asian-Aust J Anim Sci 22:1667–1675

    Article  CAS  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  26. Xun W, Shi L, Zhou H, Hou G, Cao T, Zhao C (2015) Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int Immunopharmacol 27:46–52

    Article  CAS  Google Scholar 

  27. Peng X, Yan H, You Z, Wang P, Wang S (2004) Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients. Burns 30:135–139

    Article  Google Scholar 

  28. Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584

    Article  Google Scholar 

  29. Fukudome I, Kobayashi M, Dabanaka K, Maeda H, Okamoto K, Okabayashi T, Baba R, Kumagai N, Oba K, Fujita M, Hanazaki K (2014) Diamine oxidase as a marker of intestinal mucosal injury and the effect of soluble dietary fiber on gastrointestinal tract toxicity after intravenous 5-fluorouracil treatment in rats. Med Mol Morphol 47:100–107

    Article  CAS  Google Scholar 

  30. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  CAS  Google Scholar 

  31. Tan B, Yin Y, Kong X, Li P, Li X, Gao H, Li X, Huang R, Wu G (2010) L-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids 38:1227–1235

    Article  CAS  Google Scholar 

  32. Hou Y, Wang L, Zhang W, Yang Z, Ding B, Zhu H, Liu Y, Qiu Y, Yin Y, Wu G (2012) Protective effects of N-acetylcysteine on intestinal functions of piglets challenged with lipopolysaccharide. Amino Acids 43:1233–1242

    Article  CAS  Google Scholar 

  33. Al-Sayeqh AF, Loughlin MF, Dillon E, Mellits KH, Connerton IF (2010) Campylobacter jejuni activates NF-kappaB independently of TLR2, TLR4, Nod1 and Nod2 receptors. Microb Pathog 49:294–304

    Article  CAS  Google Scholar 

  34. Sabroe I, Parker LC, Dower SK, Whyte MK (2008) The role of TLR activation in inflammation. J Pathol 214:126–135

    Article  CAS  Google Scholar 

  35. Chen Y, Chen D, Tian G, He J, Mao X, Mao Q, Yu B (2012) Dietary arginine supplementation alleviates immune challenge induced by Salmonella enterica serovar Choleraesuis bacterin potentially through the Toll-like receptor 4-myeloid differentiation factor 88 signalling pathway in weaned piglets. Br J Nutr 108:1069–1076

    Article  CAS  Google Scholar 

  36. Coll RC, O’Neill LA (2010) New insights into the regulation of signalling by toll-like receptors and nod-like receptors. J Innate Immun 2:406–421

    Article  CAS  Google Scholar 

  37. Zhang G, Ghosh S (2002) Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem 277:7059–7065

    Article  CAS  Google Scholar 

  38. Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, Kurt-Jones EA, Karp CL (2005) Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol 6:571–578

    Article  CAS  Google Scholar 

  39. Mansell A, Smith R, Doyle SL, Gray P, Fenner JE, Crack PJ, Nicholson SE, Hilton DJ, O’Neill LA, Hertzog PJ (2006) Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol 7:148–155

    Article  CAS  Google Scholar 

  40. McDonald C, Chen FF, Ollendorff V, Ogura Y, Marchetto S, Lécine P, Borg JP, Nuñez G (2005) A role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling. J Biol Chem 280:40301–40309

    Article  CAS  Google Scholar 

  41. Eitel J, Krüll M, Hocke AC, N’Guessan PD, Zahlten J, Schmeck B, Slevogt H, Hippenstiel S, Suttorp N, Opitz B (2008) Beta-PIX and Rac1 GTPase mediate trafficking and negative regulation of NOD2. J Immunol 181:2664–2671

    Article  CAS  Google Scholar 

  42. Kondo T, Kawai T, Akira S (2012) Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol 33:449–458

    Article  CAS  Google Scholar 

  43. Ren W, Chen S, Yin J, Duan J, Li T, Liu G, Feng Z, Tan B, Yin Y, Wu G (2014) Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. J Nutr 144:988–995

    Article  CAS  Google Scholar 

  44. Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31422053 and 31372318), and the Project of the Hubei Provincial Department of Education (T201508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, Y., Shi, H. et al. Aspartate attenuates intestinal injury and inhibits TLR4 and NODs/NF-κB and p38 signaling in weaned pigs after LPS challenge. Eur J Nutr 56, 1433–1443 (2017). https://doi.org/10.1007/s00394-016-1189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-016-1189-x

Keywords

Navigation