Skip to main content

Advertisement

Log in

Therapeutic potential of mesenchymal stem cell transplantation in a nitrofen-induced congenital diaphragmatic hernia rat model

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the efficacy of mesenchymal stem cells (MSCs) in a nitrofen-induced congenital diaphragmatic hernia (CDH) rat model.

Methods

Pregnant rats were exposed to nitrofen on embryonic day 9.5 (E9.5). MSCs were isolated from the enhanced green fluorescent protein (eGFP) transgenic rat lungs. The MSCs were transplanted into the nitrofen-induced E12.5 rats via the uterine vein, and the E21 lung explants were harvested. The study animals were divided into three: the control group, the nitrofen-induced left CDH (CDH group), and the MSC-treated nitrofen-induced left CDH (MSC-treated CDH group). The specimens were morphologically analyzed using HE and immunohistochemical staining with proliferating cell nuclear antigen (PCNA), surfactant protein-C (SP-C), and α-smooth muscle actin.

Results

The alveolar and medial walls of the pulmonary arteries were significantly thinner in the MSC-treated CDH group than in the CDH group. The alveolar air space areas were larger, while PCNA and the SP-C positive cells were significantly higher in the MSC-treated CDH group, than in the CDH group. MSC engraftment was identified on immunohistochemical staining of the GFP in the MSC-treated CDH group.

Conclusions

MSC transplantation potentially promotes alveolar and pulmonary artery development, thereby reducing the severity of pulmonary hypoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Masumoto K, Teshiba R, Esumi G, Nagata K, Takahata Y, Hikino S, Hara T, Hojo S, Tsukimori K, Wake N, Kinukawa N, Taguchi T (2009) Improvement in the outcome of patients with antenatally diagnosed congenital diaphragmatic hernia using gentle ventilation and circulatory stabilization. Pediatr Surg Int 25:487–492

    Article  PubMed  Google Scholar 

  2. Nagata K, Usui N, Kanamori Y, Takahashi S, Hayakawa M, Okuyama H, Inamura N, Fujino Y, Taguchi T (2013) The current profile and outcome of congenital diaphragmatic hernia: a nationwide survey in Japan. J Pediatr Surg 48:738–744

    Article  PubMed  Google Scholar 

  3. Takayasu H, Nakazawa N, Montedonico S, Sugimoto K, Sato H, Puri P (2007) Impaired alveolar epithelial cell differentiation in the hypoplastic lung in nitrofen-induced congenital diaphragmatic hernia. Pediatr Surg Int 23:405–410

    Article  PubMed  Google Scholar 

  4. Esumi G, Masumoto K, Teshiba R, Nagata K, Kinoshita Y, Yamaza H, Nonaka K, Taguchi T (2011) Effect of insulin-like growth factors on lung development in a nitrofen-induced CDH rat model. Pediatr Surg Int 27:187–192

  5. Gonzalez-Reyes S, Alvarez L, Diez-Pardo JA, Tovar JA (2003) Prenatal vitamin E improves lung and heart hypoplasia in experimental diaphragmatic hernia. Pediatr Surg Int 19:331–334

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt AF, Gonçalves FLL, Regis AC, Gallindo RM, Lourenço S (2012) Prenatal retinoic acid improves lung vascularization and VEGF expression in CDH rat. Am J Obstet Gynecol 207:76.e25–76.e32

  7. Deprest J, De Coppi P (2012) Antenatal management of isolated congenital diaphragmatic hernia today and tomorrow: ongoing collaborative research and development. J Pediatr Surg 47:282–290

    Article  PubMed  Google Scholar 

  8. Jani J, Nicolaides KH, Keller RL, Benachi A, Peralta CF, Favre R, Moreno O, Tibboel D, Lipitz S, Eggink A, Vaast P, Allegaert K, Harrison M, Deprest J, Antenatal-CDH-Registry Group (2007) Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol 30:67–71

  9. Jani J, Valencia C, Cannie M, Vuckovic A, Sellars M, Nicolaides KH (2011) Tracheal diameter at birth in severe congenital diaphragmatic hernia treated by feto endoscopic tracheal occlusion. Prenat Diagn 31:699–704

    Article  CAS  PubMed  Google Scholar 

  10. de Coppi Paolo, Deprest Jan (2012) Regenerative medicine for congenital diaphragmatic hernia: regeneration for repair. Eur J Pediatr Surg 22:393–398

    Article  PubMed  Google Scholar 

  11. Hematti P (2008) Role of mesenchymal stromal cells in solid organ transplantation. Transpl Rev 22:262–273

    Article  Google Scholar 

  12. Hoffman AM, Paxson JA, Mazan MR, Davis AM, Tyagi S, Murthy S, Ingenito EP (2011) Lung-derived mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of elastase-injured lung. Stem Cells Dev 20:1779–1792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zhu X, Shi W, Tai W, Liu F (2012) The comparison of biological characteristics and multilineage differentiation of bone marrow and adipose derived mesenchymal stem cells. Cell Tissue Res 11:277–287

    Article  Google Scholar 

  14. Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, Kourembanas S (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Med 180:1122–1130

    Article  CAS  Google Scholar 

  15. van Haaften T, Thébaud B (2006) Adult bone marrow derived stem cell for the lung: implications for pediatric lung disease. Pediatr Res 59:94–99

    Article  Google Scholar 

  16. Pua JZ, Stonestreet BS, Cullen A, Shahsafaei A, Sadowska GB, Sunday ME (2005) Histochemical analyses of altered fetal lung development following single vs multiple courses of antenatal steroids. J Histochem Cytochem 53:1469–1479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wu S, Platteau A, Chen S, McNamara G, Whitsett J, Bancalari E (2010) Conditional overexpression of connective tissue growth factor disrupts postnatal lung development. Am J Respir Cell Mol Biol 42:552–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kitaguchi Y, Taraseviciene-Stewart L, Hanaoka M, Natarajan R, Kraskauskas D, Voelkel N (2012) Acrolein induces endoplasmic reticulum stress and causes airspace enlargement. PLoS One 7(5):e38038. doi:10.1371/journal.pone.0038038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, Kourembanas S (2012) Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ 2:170–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Okoye BO, Losty PD, Lloyd DA, Gosney JR (1998) Effect of prenatal glucocorticoids on pulmonary vascular muscularisation in nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 33:76–80

    Article  CAS  PubMed  Google Scholar 

  21. Pozzobon M, Ghionzoli M, De Coppi P (2010) ES, iPS, MSC, and AFS cells. Stem cells exploitation for pediatric surgery: current research and perspective. Pediatr Surg Int 26:3–10

    Article  PubMed  Google Scholar 

  22. Crisostomo PRM, Markel TA, Wang Y, Meldrum DR (2008) Surgically relevant aspects of stem cell paracrine effects. Surgery 143:577–581

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ardhanareeswaran K, Miratsou M (2013) Lung stem and progenitor cells. Respiration 85:89–95

    Article  PubMed  Google Scholar 

  24. Keating A (2012) Mesenchymal stromal cells: new directions. Stem Cell 10:709–716

    CAS  Google Scholar 

  25. Ingenito EP, Tsai L, Murthy S, Tyagi S, Mazan M, Hoffman A (2012) Autologous lung-derived mesenchymal stem cell transplantation in experimental emphysema. Cell Transpl 21:175–189

    Article  Google Scholar 

  26. Chen CP, Lee MY, Huang JP, Aplin JD, Wu YH, Hu CS, Chen PC, Li H, Hwang SM, Liu SH, Yang YH (2008) Trafficking of multipotent mesenchymal stromal cells from maternal circulation through the placenta involves vascular endothelial growth factor receptor-1 and integrins. Stem Cells 26:550–561

    Article  CAS  PubMed  Google Scholar 

  27. Badri L, Walker NM, Ohtsuka T, Wang Z, Delmar M, Flint A, Golden MP, Toews GB, Pinsky DJ, Krebsbach PH, Lama VN (2011) Epithelial interactions and local engraftment of lung-resident mesenchymal stem cells. Am J Respir Cell Mol Biol 45:809–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA (2011) Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 29:913–919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhu F, Xia ZF (2013) Paracrine activity of stem cells in therapy for acute lung injury and adult respiratory distress syndrome. J Trauma Acute Care Surg 74:1351–1356

    Article  PubMed  Google Scholar 

  30. Conese M, Carbone A, Castellani S, Gioia SD (2013) Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cell Tissues Organs 197:445–473

    Article  CAS  Google Scholar 

  31. Di Bernardo J, Maiden MM, Hershenson MB, Kunisaki SM (2014) Amniotic fluid derived mesenchymal stem cells augment fetal lung growth in a nitrofen explant model. J Pediatr Surg. doi:10.1016/j.jpedsurg.2014.01.013

    PubMed  Google Scholar 

  32. Pederiva F, Ghionzoli M, Pierro A, De Coppi P, Tovar JA (2013) Amniotic fluids stem cells rescue both in vitro and in vivo growth, innervation, and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects. Cell Transpl 22:1683–1694

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Brian Quinn for supporting the manuscript. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science.

Conflict of interest

The authors do not have any conflicts of interest related to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouji Nagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuniartha, R., Alatas, F.S., Nagata, K. et al. Therapeutic potential of mesenchymal stem cell transplantation in a nitrofen-induced congenital diaphragmatic hernia rat model. Pediatr Surg Int 30, 907–914 (2014). https://doi.org/10.1007/s00383-014-3576-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-014-3576-9

Keywords

Navigation