Skip to main content

Advertisement

Log in

The comparition of biological characteristics and multilineage differentiation of bone marrow and adipose derived Mesenchymal stem cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We compared the two sources of adipose and bone marrow-derived mesenchymal stem cells (BMSCs and AMSCs ) in multiple differentiation capacity and biological characteristics to provide a theoretical basis for stem cells transplantation. We isolated bone marrow- and adipose-derived mesenchymal stem cells and compared their phenotype,cell doubling time, the secretion of factors and their ability of multi-differentiation. We also compared their differences in T lymphocyte activation, proliferation and suppression. BMSCs and AMSCs were similar in cell phenotype and the differences existed only in the expression of CD106. On the proliferation rate, AMSCs were faster than BMSCs (doubling time 28 vs. 39 h). In addition, both of these two sources of cells were able to differentiate into bone, fat and cartilage that proved their stem cells properties and the number of stem cell progenitors (CFU-F) from adipose tissue were 10 times larger than those from bone marrow. But AMSCs showed a diminished capacity for suppressing T lymphocyte proliferation and activation compared to BMSCs. Cell origin and abundance were decisive factors in stem cells applications and, in the same volume, with the same premise of AMSCs and BMSCs, adipose tissue is a more promising source of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–22

    Article  PubMed  CAS  Google Scholar 

  • Bukowiecki LJ, Geloen A, Collet AJ (1986) Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation. Am J Physiol 250:c880–887

    PubMed  CAS  Google Scholar 

  • Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332(2):370–9

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Waddington SN, O'Donoghue K, Kurata H, Guillot PV, Gotherstrom C, Themis M, Morgan JE, Fisk NM (2007) Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells 25(4):875–84

    Article  PubMed  CAS  Google Scholar 

  • Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–72

    Article  PubMed  CAS  Google Scholar 

  • Cutler AJ, Limbani V, Girdlestone J, Navarrete CV (2010) Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J Immunol 185(11):6617–23, Epub 2010 Oct 27

    Article  PubMed  CAS  Google Scholar 

  • De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK (2003) Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 89:267–270

    Article  PubMed  Google Scholar 

  • Deng W, Han Q, Liao L, Li C, Ge W, Zhao Z, You S, Deng H, Zhao RC (2004) Allogeneic bone marrow-derived flk-1+Sca-1- mesenchymal stem cells leads to stable mixed chimerism and donor-specific tolerance. Exp Hematol 32(9):861–7

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Han Q, Liao L, Li C, Ge W, Zhao Z, You S, Deng H, Murad F, Zhao RC (2005) Engrafted bone marrow-derived flk-(1+) mesenchymal stem cells regenerate skin tissue. Tissue Eng 11(1–2):110–9

    Article  PubMed  CAS  Google Scholar 

  • Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, Phan TT, Volk HD, Reichenspurner H, Robbins RC, Schrepfer S (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 20(5):655–67

    Article  PubMed  Google Scholar 

  • Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RC (2003) Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flk1+/CD31-/CD34- Progenitors. J Hematother Stem Cell Res 12(6):603–13

    Article  PubMed  CAS  Google Scholar 

  • Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RC (2004a) Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 78(1):83–8

    Article  PubMed  CAS  Google Scholar 

  • Fang B, Liao L, Shi M, Yang S, Zhao RC (2004b) Multipotency of Flk1CD34 progenitors derived from human fetal bone marrow. J Lab Clin Med 143(4):230–40

    Article  PubMed  CAS  Google Scholar 

  • Fang B, Song YP, Liao LM, Han Q, Zhao RC (2006) Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplant 38(5):389–90

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein A (1982) Stromal bone marrow cells and the hematopoietic microenvironment. Arkh Patol 44(10):3–11

    Google Scholar 

  • Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–7

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Fang B, Liao L, Zhao Z, Liu J, Chen H, Hsu SH, Cui Q, Zhao RC (2003) Hemangioblastic characteristics of fetal bone marrow-derived Flk1(+)CD31(-)CD34(-) cells. Exp Hematol 31(7):650–8

    Article  PubMed  CAS  Google Scholar 

  • Jiang XX, Zhang Y, Liu B et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–6

    Article  PubMed  CAS  Google Scholar 

  • Johann PD, Vaegler M, Gieseke F, Mang P, Armeanu-Ebinger S, Kluba T, Handgretinger R, Müller I (2010) Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity. BMC Cancer 10:501

    Article  PubMed  Google Scholar 

  • Kasper G, Dankert N, Tuischer J, Hoeft M, Gaber T, Glaeser JD, Zander D, Tschirschmann M, Thompson M, Matziolis G, Duda GN (2007) Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells 25(4):903–10

    Article  PubMed  CAS  Google Scholar 

  • Krause U, Harter C, Seckinger A, Wolf D, Reinhard A, Bea F, Dengler T, Hardt S, Ho A, Katus HA, Kuecherer H, Hansen A (2007) Intravenous delivery of autologous mesenchymal stem cells limits infarct size and improves left ventricular function in the infarcted porcine heart. Stem Cells Dev 16(1):31–7

    Article  PubMed  CAS  Google Scholar 

  • Li F, Bronson S, Niyibizi C (2010) Derivation of murine induced pluripotent stem cells (iPS) and assessment of their differentiation toward osteogenic lineage. J Cell Biochem 109(4):643–52

    Article  PubMed  CAS  Google Scholar 

  • Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH (1999) Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109:199–209

    Google Scholar 

  • Naito H, Dohi Y, Zimmermann W, Tojo T, Takasawa S, Eschenhagen T, Taniguchi S (2011) The effect of mesenchymal stem cell osteoblastic differentiation on the mechanical properties of engineered bone-like tissue. Tissue Eng Part A;May 7. [Epub ahead of print]

  • Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L, Blancher A (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129(1):118–29

    Article  PubMed  Google Scholar 

  • Rider DA, Dombrowski C, Sawyer AA, Ng GH, Leong D, Hutmacher DW, Nurcombe V, Cool SM (2008) Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells 26(6):1598–608

    Article  PubMed  CAS  Google Scholar 

  • Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L, Le Blanc K (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–7

    Article  PubMed  Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. Effects of hormone on fat metabolism and liplysis. J boil Chem 239:375–80

    CAS  Google Scholar 

  • Semenov OV, Koestenbauer S, Riegel M, Zech N, Zimmermann R, Zisch AH, Malek A (2010) Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol 202(2):193.e1–193.e13, Epub 2009 Dec 24

    Article  Google Scholar 

  • Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24(1):74–85

    Article  PubMed  Google Scholar 

  • Sundin M, D'arcy P, Johansson CC, Barrett AJ, Lönnies H, Sundberg B, Nava S, Kiessling R, Mougiakakos D, Le Blanc K (2011) Multipotent mesenchymal stromal cells express FoxP3: a marker for the immunosuppressive capacity? J Immunother 34(4):336–42

    Article  PubMed  CAS  Google Scholar 

  • Wada N, Bartold PM, Gronthos S (2011) Human foreskin fibroblasts exert immunomodulatory properties by a different mechanism to bone marrow stromal/stem cells. Stem Cells Dev 20(4):647–59, Epub 2010 Oct 12

    Article  PubMed  CAS  Google Scholar 

  • Weng JY, Du X, Geng SX, Peng YW, Wang Z, Lu ZS, Wu SJ, Luo CW, Guo R, Ling W, Deng CX, Liao PJ, Xiang AP (2010) Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transplant 45(12):1732–40, Epub 2010 Sep 6

    Article  PubMed  CAS  Google Scholar 

  • Xishan Z, Guangyu A, Yuguang S, Hongmei Z (2011) The research on the immuno-modulatory defect of mesenchymal stem cell from chronic myeloid leukemia patients. J Exp Clin Cancer Res 30(1):47

    Article  PubMed  Google Scholar 

  • Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13(3):263–71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuquan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Shi, W., Tai, W. et al. The comparition of biological characteristics and multilineage differentiation of bone marrow and adipose derived Mesenchymal stem cells. Cell Tissue Res 350, 277–287 (2012). https://doi.org/10.1007/s00441-012-1453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1453-1

Keywords

Navigation