Skip to main content

Advertisement

Log in

Regional climate simulation with a high resolution GCM: surface hydrology

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract.

Aspects of the surface hydrology of high resolution (T106) versions of the ECHAM3 and ECHAM4 general circulation models are analysed over the European region and compared with available observations. The focus is on evaporation, and surface measurements are shown to be useful for the identification of systematic deficiencies in the regional-scale performance of climate models on an annual and seasonal basis, such as the excessive summer dryness over continents. The annual mean evaporation at the available European observation sites is overestimated by 4 mm/month by the ECHAM3 T106, quantitatively consistent with an overestimated surface net radiation of 4 Wm–2 over Europe. In winter, ECHAM3 shows an overestimated evaporation which compensates for an overestimated downward sensible heat flux. This is primarily related to a too strong zonalisation of the large-scale flow and associated overestimated warm air advection and windspeed. Inaccurate local land surface parameters (e.g. leaf area index, roughness length) are minor contributors to the overestimation. In early summer, the excessive solar radiation at the surface calculated with the ECHAM3 radiation scheme generates a too large evaporation and an excessive depletion of the soil moisture reservoirs. This favours the subsequent excessive summer dryness over Europe with too low values of evaporation, convective precipitation and soil moisture content, leading to a too high surface temperature. In the ECHAM4 T106 simulation, the problem of the European summer dryness is largely reduced, and the simulated evaporation as well as convective precipitation, cloud amount and soil moisture content during summer are substantially improved. The new ECHAM4 radiation scheme appears to be an important factor for this improvement, since it calculates smaller insolation values in better agreement with observations and subsequently may avoid an excessive drying of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 20 September 1995 / Accepted: 10 May 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wild, M., Dümenil, L. & Schulz, JP. Regional climate simulation with a high resolution GCM: surface hydrology. Climate Dynamics 12, 755–774 (1996). https://doi.org/10.1007/s003820050141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003820050141

Keywords

Navigation