Skip to main content

Advertisement

Log in

ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Using observational datasets and numerical model experiments, the mechanism on the slowly varying change in the relationship between the El Niño-Southern Oscillation (ENSO) and the East Asian winter monsoon (EAWM) is investigated. The decadal-window (11-, 15-, and 21-year) moving correlations show a significant change in the boreal wintertime ENSO–EAWM relationship between two sub-periods of 1976‒1992 and 1997‒2013. Such recent change in ENSO–EAWM relationship is mainly attributed to the changes in the intensity and zonal location of the anomalous lower-tropospheric northwest Pacific anticyclone (NWP-AC). NWP-AC commonly develops near the region of the Philippine Sea during the ENSO’s peak phase and plays an important role of bridging the tropical convection and mid-latitude teleconnection. On one hand, the intensity of the NWP-AC is influenced by the interdecadal variation in a linkage between ENSO and the Indian Ocean sea surface temperature (SST) variability, referring that a strong connection between the Pacific and Indian Oceans results in the strengthening of NWP-AC response to ENSO. On the other hand, the zonal displacement of the NWP-AC is associated with the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). That is, the tropical Pacific mean state (i.e., zonal SST gradient between climatologically warm western Pacific and cold eastern Pacific)—strengthened by either the negative PDO phase or the positive AMO phase—drives the anomalous ENSO-induced convection to be shifted to the west. With this westward shift, the zonal center of the NWP-AC also migrates westward over the Philippine Islands and exerts stronger connection between ENSO and EAWM. In contrast, the relaxed zonal SST contrast associated with either the positive PDO phase or the negative AMO phase tends to exhibit weaker ENSO–EAWM relationship via both of eastward shifted zonal centers of the anomalous ENSO-induced convection and the NWP-AC. Finally, a series of the numerical experiments conducted by an atmospheric general circulation model supports the observational findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • An SI (2004) A dynamic link between the basin-scale and zonal modes in the tropical Indian Ocean. Theor Appl Climatol 78:203–215

    Article  Google Scholar 

  • An SI, Bong H (2015) Inter-decadal change in El Niño-Southern Oscillation examined with Bjerknes stability index analysis. Clim Dyn. doi:10.1007/s00382-015-2883-8

    Google Scholar 

  • An SI, Jin FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412

    Article  Google Scholar 

  • An SI, Kim JW, Im SH, Kim BM, Park JH (2012) Recent and future sea surface temperature trends in tropical Pacific warm pool and cold tongue regions. Clim Dyn 39:1373–1383

    Article  Google Scholar 

  • Annamalai H, Liu P, Xie SP (2005) Southwest Indian Ocean SST variability: its local effect and remote influence on Asian monsoons. J Clim 18:4150–4167

    Article  Google Scholar 

  • Cai WJ, Rensch PV, Cowan T, Sullivan A (2010) Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and imapct. J Clim 23:4944–4955

    Article  Google Scholar 

  • Cai WJ et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang 4:111–116

    Article  Google Scholar 

  • Cai WJ et al (2015) Increased frequency of extreme La Niña under greenhouse warming. Nat Clim Chang 5:132–137

    Article  Google Scholar 

  • Chan JCL, Li CY (2004) The East Asian winter monsoon. In: Chang CP (ed) East Asian monsoon. World Scientific, Singapore, pp 54‒106

  • Chang CP, Lau KM (1982) Short-term planetary-scale interaction over the tropics and the midlatitudes during northern winter. Part I: contrast between active and inactive periods. Mon Weather Rev 110:933–946

    Article  Google Scholar 

  • Chang CP, Erickson JE, Lau KM (1979) Northeasterly cold waves and near-equatorial disturbances over the winter MONEX area during December 1974. Part I: synoptic aspects. Mon Weather Rev 107:812–829

    Article  Google Scholar 

  • Chang CP, Wang Z, Hendon H (2006) The Asian winter monsoon. The Asian Monsoon. In: Wang B (ed) The Asian Monsoon. Springer, Berlin, pp 89–127

    Chapter  Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Chen W, Feng J, Wu R (2013) Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J Clim 26:622–635

    Article  Google Scholar 

  • Chung PH, Li T (2013) Interdecadal relationship between the mean state and El Niño types. J Clim 26:361–379

    Article  Google Scholar 

  • Chung ES, Soden BJ, Sohn BJ, Schmetz J (2013) An assessment of the diurnal variation of upper tropospheric humidity in reanalysis data sets. J Geophys Res 118:3425–3430

    Google Scholar 

  • Chylek P, Klett JD, Lesins G, Dubey MK, Hengartner N (2014) The Atlantic multidecadal oscillation as a dominant factor of oceanic influence on climate. Geophys Res Lett 41:2689–2697

    Google Scholar 

  • Collins WD et al (2004) Description of the NCAR community atmosphere model (CAM3). Technical report, NCAR/TN-464 + STR, National Center for Atmospheric Research, Boulder, p 226

  • Collins WD et al (2006) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143

    Article  Google Scholar 

  • Ding Y (1994) Monsoons over China. Atmospheric sciences library, vol 16. Kluwer Academic Publishers, Dordrecht, p 432

    Google Scholar 

  • Ding Y, Krishnamurti TN (1987) Heat budget of the Siberian high and the winter monsoon. Mon Weather Rev 115:2428–2449

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Feng J, Wang L, Chen W (2014) How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J Clim 27:2682–2698

    Article  Google Scholar 

  • Gong DY, Wang SW, Zhu JH (2001) East Asian winter monsoon and Arctic oscillation. Geophys Res Lett 28:2073–2076

    Article  Google Scholar 

  • Ham YG, Kug JS (2015) Improvement of ENSO simulation based on intermodal diversity. J Clim 28:998–1015

    Article  Google Scholar 

  • Harrison DE, Larkin NK (1996) The COADS sea level pressure signal: a near-global El Niño composite and time series view, 1946‒1993. J Clim 9:3025–3055

    Article  Google Scholar 

  • He S, Wang H (2013) Oscillating relationship between the East Asian winter monsoon and ENSO. J Clim 15:9819–9838

    Article  Google Scholar 

  • He S, Wang H, Liu J (2013) Changes in the relationship between ENSO and Asia-Pacific midlatitude winter atmospheric circulation. J Clim 15:3377–3393

    Article  Google Scholar 

  • Huang RH, Zhou LT, Chen W (2003) The progresses of recent studies on the variabilities of the East Asian monsoon and their causes. Adv Atmos Sci 20:55–69

    Article  Google Scholar 

  • Huang RH, Chen JL, Huang G (2007) Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. Adv Atmos Sci 24:993–1023

    Article  Google Scholar 

  • Huang B et al (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J Clim 28:911–930

    Article  Google Scholar 

  • Ji LR, Shuqing S, Arpe K, Bengtsson L (1997) Model study on the interannual variability of Asian winter monsoon. Adv Atmos Sci 14:1–22

    Article  Google Scholar 

  • Jiang ZH, Yang H, Liu Y, Wu YZ, Wen N (2014) Assessing the influence of regional SST modes on the winter temperature in China: the effect of tropical Pacific and Atlantic. J Clim 27:868–879

    Article  Google Scholar 

  • Jones PD et al (2012) Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res 117:D05127. doi:10.1029/2011JD017139

    Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu et al (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643

    Article  Google Scholar 

  • Kang IS, No HH, Kucharski F (2014) ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J Clim 27:7911–7920

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986

    Article  Google Scholar 

  • Kim D, Jang YS, Kim DH, Kim YH, Watanabe M, Jin FF, Kug JS (2011) El Niño-Southern oscillation sensitivity to cumulus entrainment in a coupled general circulation model. J Geophys Res 116:D22112. doi:10.1029/2011JD016526

    Google Scholar 

  • Kim JW, Yeh SW, Chang EC (2014) Combined effect of El Niño-Southern Oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Clim Dyn 42:957–971

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NG (1999) Remote sea surface temperature variation during ENSO: evidence for a tropical atmosphere bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Kug JS, Kang IS (2006) Interactive feedback between the Indian Ocean and ENSO. J Clim 19:1784–1801

    Article  Google Scholar 

  • Kug JS, Kirtman BP, Kang IS (2006a) Interactive feedback between ENSO and the Indian Ocean in an interactive ensemble coupled model. Am Meteorol Soc 19:6371–6381

    Google Scholar 

  • Kug JS, Li T, An SI, Kang IS, Luo JJ, Masson S, Yamagata T (2006b) Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys Res Lett 33:L09710. doi:10.1029/2005GL024916

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515

    Article  Google Scholar 

  • Lau KM, Li MT (1984) The monsoon of East Asia and its global associations—a survey. Bull Am Meteorol Soc 65:114–125

    Article  Google Scholar 

  • Lau N-C, Nath MJ (2000) Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309

    Article  Google Scholar 

  • Lau NC, Nath MJ (2003) Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20

    Article  Google Scholar 

  • Lau NC, Nath MJ (2006) ENSO modulation of the interannual and intraseasonal variability of the East Asian monsoon—a model study. J Clim 19:4508–4530

    Article  Google Scholar 

  • Lau NC, Nath MJ (2009) A model investigation of the role of air-sea interaction in the climatological evolution and ENSO-related variability of the summer monsoon over the South China Sea and western North Pacific. J Clim 22:4771–4792

    Article  Google Scholar 

  • Li X (1955) A study of cold waves in East Asia. Scientific works in modern China-meteorology (1919‒1949). Science Press, Beijing, pp 35–118 (in Chinese)

    Google Scholar 

  • Li C (1990) Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv Atmos Sci 7:36–46

    Article  Google Scholar 

  • Li S, Bates G (2007) Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv Atmos Sci 24:126–135

    Article  Google Scholar 

  • Li T, Wang B (2005) A review on the western North Pacific monsoon: synoptic-to-interannual variabilities. Terr Atmos Ocean Sci 16:285–314

    Article  Google Scholar 

  • Li Y, Yang S (2010) A dynamical index for the East Asian winter monsoon. J Clim 23:4255–4262

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079

    Article  Google Scholar 

  • Newman M, Sardeshmukh PD (1998) The impact of the annual cycle on the North Pacific/North American response to remote low frequency forcing. J Atmos Sci 55:1336–1353

    Article  Google Scholar 

  • Ohba M, Ueda H (2007) An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J Meteorol Soc Jpn 85:335–348

    Article  Google Scholar 

  • Okumura YM, Ohba M, Deser C, Ueda H (2011) A proposed mechanism for the asymmetric during of El Niño and La Niña. J Clim 24:3822–3829

    Article  Google Scholar 

  • Park HJ, Ahn JB (2015) Combined effect of the Arctic Oscillation and the western Pacific pattern on East Asia winter temperature. Clim Dyn. doi:10.1007/s00382-015-2763-2

    Google Scholar 

  • Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648

    Article  Google Scholar 

  • Sakai K, Kawamura R (2009) Remote response of the East Asian winter monsoon to tropical forcing related to El Niño-Southern Oscillation. J Geophys Res 114:D06105. doi:10.1029/2008JD010824

    Article  Google Scholar 

  • Shi N (1996) Features of the East Asian winter monsoon intensity on multiple time scale in recent 40 years and their relation to climate. J Appl Meteorol Sci 7(2):175–182

    Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:26–35

    Google Scholar 

  • Son HY, Park JY, Kug JS, Yoo J, Kim CH (2014) Winter precipitation variability over Korean Peninsula associated with ENSO. Clim Dyn 42:3171–3186

    Article  Google Scholar 

  • Sun BM, Li CY (1997) Relationship between the disturbances of East Asian trough and tropical convective activities in boreal winter. Chin Sci Bull 42:500–504 (in Chinese)

    Google Scholar 

  • Sung MK, An SI, Kim BM, Kug JS (2015) Asymmetric impact of Atlantic multidecadal oscillation on El Niño and La Niña characteristics. Geophys Res Lett 42:4998–5004. doi:10.1002/2015GL064381

    Article  Google Scholar 

  • Tao SY (1957) A study of activities of cold airs in East Asian winter. In: China Meteorological Administration (eds) Handbook of short-term forecast. Meteorology Press, Beijing, pp 60‒92 (in chinese)

  • Tomita T, Yasunari T (1996) Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J Meteorol Soc Jpn 74:399–413

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Wallace GT, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Wang L, Chen W (2010) How well do existing indices measure the strength of the East Asian winter monsoon? Adv Atmos Sci 27:855–870

    Article  Google Scholar 

  • Wang H, He S (2012) Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chin Sci Bull 57:3535–3540

    Article  Google Scholar 

  • Wang B, Zhang Q (2002) Pacific-East Asian teleconnection. Part II: how the Philippine Sea anomalous anticyclone is established during El Niño development. J Clim 15:3252–3265

    Article  Google Scholar 

  • Wang B, Wu R, Lukas R (1999) Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition. J Meteorol Soc Jpn 77:1–16

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu R, Li T (2003) Atmosphere-warm ocean interaction and its impact on Asian-Australian monsoon variability. J Clim 16:1195–1211

    Article  Google Scholar 

  • Wang L, Chen W, Huang RH (2008) Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys Res Lett 35:L20702. doi:10.1029/2008GL035287

    Article  Google Scholar 

  • Wang L, Chen W, Zhou W, Huang R (2009) Interannual variations of East Asian trough axis at 500 hPa and its association with the East Asian winter monsoon pathway. J Clim 22:600–614

    Article  Google Scholar 

  • Wang B, Wu Z, Chang CP, Liu J, Li J, Zhou T (2010) Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: the Northern and Southern temperature modes. J Clim 15:1495–1512

    Article  Google Scholar 

  • Wang B, Xiang B, Lee JY (2013) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc Natl Acad Sci USA 110:2718–2722

    Article  Google Scholar 

  • Watanabe M, Jin FF (2002) Role of Indian Ocean warming in the development of the Philippine Sea anticyclone during ENSO. Geophys Res Lett. doi:10.1029/2001GL014318

    Google Scholar 

  • Watanabe M, Jin FF (2003) A moist linear baroclinic model: coupled dynamical-convective response to El Niño. J Clim 16:1121–1140

    Article  Google Scholar 

  • Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24:779–782. doi:10.1029/97GL00689

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric science. Academic Press, Cambridge, p 648

    Google Scholar 

  • Wu BY, Zhang R, D’Arrigo R (2006) Distinct modes of the East Asian winter monsoon. Mon Weather Rev 134:2165–2179

    Article  Google Scholar 

  • Wu Z, Li J, Wang B, Liu X (2009) Can the Southern Hemisphere annular mode affect Chinese winter monsoon? J Geophys Res 114:D11107. doi:10.1029/2008JD011501

    Article  Google Scholar 

  • Wu B, Li T, Zhou T (2010) Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J Clim 23:2974–2986

    Article  Google Scholar 

  • Xie SP, Annamalai H, Schott FA, McCreary JP Jr (2002) Structure and mechanisms of South Indian Ocean climate variability. J Clim 15:864–878

    Article  Google Scholar 

  • Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Yang S, Lau KM, Kim KM (2002) Variations of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J Clim 15:306–325

    Article  Google Scholar 

  • Yeh SW, Kang YJ, Noh Y, Miller AJ (2011) The North Pacific climate transitions of the winters of 1976/77 and 1988/89. J Clim 24:1170–1183

    Article  Google Scholar 

  • Yeh SW, Kug JS, An SI (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia Pac J Atmos Sci 50:69–81

    Article  Google Scholar 

  • Yu JY, Kao PK, Paek H, Hsu HH, Hung CW, Lu MM, An SI (2015) Linking emergence of the central Pacific El Niño to the Atlantic Multidecadal Oscillation. J Clim 28:651–662

    Article  Google Scholar 

  • Yuan Y, Yang S (2012) Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J Clim 25:7702–7722

    Article  Google Scholar 

  • Yuan Y, Yang S, Zhang Z (2012) Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Niño: possible effects of Indian Ocean SST. J Clim 25:7867–7883

    Article  Google Scholar 

  • Yun KS, Yeh SW, Ha KJ (2013) Distinct impact of tropical SSTs on summer North Pacific high and western North Pacific subtropical high. J Geophys Res 118:4107–4116

    Google Scholar 

  • Zhang R, Sumi A, Kimoto M (1996) Impact of El Niño on the East Asian monsoon: a diagnostic study of the ′86/87 and ′91/92 events. J Meteorol Soc Jpn 74:49–62

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020

    Article  Google Scholar 

  • Zhang R, Li TR, Wen M, Liu LK (2014) Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Clim Dyn 45:559–567

    Article  Google Scholar 

  • Zhou W, Wang X, Zhou TJ, Li C, Chan LCL (2007) Interdecadal variability of the relationship between the East Asian winter monsoon and ENSO. Meteorol Atmos Phys 98:283–293

    Article  Google Scholar 

Download references

Acknowledgments

Authors wish to thank F.-F. Jin for his helpful discussions. This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-1043, and by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-2009-C1AAA001-2009-0093042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Il An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JW., An, SI., Jun, SY. et al. ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Clim Dyn 49, 1157–1179 (2017). https://doi.org/10.1007/s00382-016-3371-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3371-5

Keywords

Navigation