Skip to main content

Advertisement

Log in

The impact of resolution on the adjustment and decadal variability of the Atlantic meridional overturning circulation in a coupled climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Variations in the Atlantic meridional overturning circulation (MOC) exert an important influence on climate, particularly on decadal time scales. Simulation of the MOC in coupled climate models is compromised, to a degree that is unknown, by their lack of fidelity in resolving some of the key processes involved. There is an overarching need to increase the resolution and fidelity of climate models, but also to assess how increases in resolution influence the simulation of key phenomena such as the MOC. In this study we investigate the impact of significantly increasing the (ocean and atmosphere) resolution of a coupled climate model on the simulation of MOC variability by comparing high and low resolution versions of the same model. In both versions, decadal variability of the MOC is closely linked to density anomalies that propagate from the Labrador Sea southward along the deep western boundary. We demonstrate that the MOC adjustment proceeds more rapidly in the higher resolution model due the increased speed of western boundary waves. However, the response of the Atlantic sea surface temperatures to MOC variations is relatively robust—in pattern if not in magnitude—across the two resolutions. The MOC also excites a coupled ocean-atmosphere response in the tropical Atlantic in both model versions. In the higher resolution model, but not the lower resolution model, there is evidence of a significant response in the extratropical atmosphere over the North Atlantic 6 years after a maximum in the MOC. In both models there is evidence of a weak negative feedback on deep density anomalies in the Labrador Sea, and hence on the MOC (with a time scale of approximately ten years). Our results highlight the need for further work to understand the decadal variability of the MOC and its simulation in climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. And hence group speed, since Kelvin waves are non-dispersive.

References

  • Balan Sarojini B, Gregory JM, Tailleux R, Bigg GR, Blaker AT, Cameron D, Edwards NR, Megann AP, Shaffrey LC, Sinha B (2011) High frequency variability of the Atlantic meridional overturning circulation. Ocean Sci Discussions 8(1):219–246. doi:10.5194/osd-8-219-2011

    Article  Google Scholar 

  • Böning CW, Bryan FO, Holland WR, Döscher R (1996) Deep-water formation and meridional overturning in a high-resolution model of the North Atlantic. J Phys Oceanogr 26(7):1142–1164. doi:10.1175/1520-0485(1996)026%3C1142:DWFAMO%3E2.0.CO;2

    Article  Google Scholar 

  • Beckmann A, Böning CW, Köberle C, Willebrand J (1994) Effects of increased horizontal resolution in a simulation of the North Atlantic Ocean. J Phys Oceanogr 24(2):326–344. doi:10.1175/1520-0485(1994)024%3C0326:EOIHRI%3E2.0.CO;2

    Article  Google Scholar 

  • Bentsen M, Drange H, Furevik T, Zhou T (2004) Simulated variability of the Atlantic meridional overturning circulation. Clim Dyn 22(6):701–720. doi:10.1007/s00382-004-0397-x

    Article  Google Scholar 

  • Biastoch A, Böning CW, Getzlaff J, Molines JM, Madec G (2008) Causes of interannual decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J Clim 21(24):6599–6615. doi:10.1175/2008JCLI2404.1

    Article  Google Scholar 

  • Bower AS, Lozier SM, Gary SF, Boning CW (2009) Interior pathways of the North Atlantic meridional overturning circulation. Nature 459(7244):243–247. doi:10.1038/nature07979

    Article  Google Scholar 

  • de Boyer Montégut C (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109(C12). doi:10.1029/2004JC002378

  • Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33(1):L01,702+. doi:10.1029/2005GL024546

    Article  Google Scholar 

  • Broecker W, Bond G, Klas M, Clark E, McManus J (1992) Origin of the northern Atlantic’s Heinrich events. Clim Dyn 6(3):265–273. doi:10.1007/BF00193540

    Article  Google Scholar 

  • Bryan K (1969) A numerical method for the study of the circulation of the world ocean. J Compu Phys 4(3):347–376. doi:10.1016/0021-9991(69)90004-7

    Article  Google Scholar 

  • Bryden HL, Mujahid A, Cunningham SA, Kanzow T (2009) Adjustment of the basin-scale circulation at 26 N to variations in Gulf Stream, deep western boundary current and Ekman transports as observed by the rapid array. Ocean Sci Discussions 6(1):871–908

    Article  Google Scholar 

  • Cassou C et al (2004) Summer sea surface temperature conditions in the north atlantic and their impact upon the atmospheric circulation in early winter. J Clim 17:3349–3363

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 385(6616):516–518. doi:10.1038/385516a0

    Article  Google Scholar 

  • Chelton DB, deSzoeke RA, Schlax MG, El Naggar K, Siwertz N (1998) Geographical variability of the first Baroclinic Rossby radius of deformation. J Phys Oceanogr 28(3):433–460. doi:10.1175/1520-0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2

    Article  Google Scholar 

  • Conkright ME, Locarnini RA, Garcia HE, O’Brien TD, Boyer TP, Stephen C, Antonov JI (2002) World ocean atlas 2001: objective analyses, data statistics, and figures, CD-ROM documentation. Nat Oceanogr Data Center, Internal Rep (17)

  • Cox MD (1984) A primitive equation, three dimensional model of the ocean. Tech. rep., GFDL, Princeton

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the atlantic meridional overturning circulation at 26.5degreesn. Science 317(5840):935–938. doi:10.1126/science.1141304

    Article  Google Scholar 

  • Curry RG, McCartney MS, Joyce TM (1998) Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature 391(6667):575–577. doi:10.1038/35356

    Article  Google Scholar 

  • Döscher R, Böning CW, Herrmann P (1994) Response of circulation and heat transport in the North Atlantic to changes in thermohaline forcing in northern latitudes: a model study. J Phys Oceanogr 24(11):2306–2320. doi:10.1175/1520-0485(1994)024%3C2306:ROCAHT%3E2.0.CO;2

    Article  Google Scholar 

  • Davey MK, Hsieh WW, Wajsowicz RC (1983) The free Kelvin wave with lateral and vertical viscosity. J Phys Oceanogr 13(12):2182–2191. doi:10.1175/1520-0485(1983)013%3C2182:TFKWWL%3E2.0.CO;2

    Article  Google Scholar 

  • Dickson R, Lazier J, Meincke J, Rhines P, Swift J (1996) Long-term coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38(3):241–295. doi:10.1016/S0079-6611(97)00002-5

    Article  Google Scholar 

  • Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean– atmosphere GCM. J Clim 18(8):1117–1135. doi:10.1175/JCLI3328.1

    Article  Google Scholar 

  • Dréevillon M, Cassou C, Terray L (2003) Model study of the North Atlantic region atmospheric response to autumn tropical Atlantic sea-surface-temperature anomalies. QJR Meteorol Soc 129(593):2591–2611. doi:10.1256/qj.02.17

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14(10):2266–2280. doi:10.1175/1520-0442(2001)014%3C2266:MOITDV%3E2.0.CO;2

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the north atlantic circulation. J Clim 14(10):2266–2280

    Article  Google Scholar 

  • Fanning AF, Weaver AJ (1998) Thermohaline variability: the effects of horizontal resolution and diffusion. J Clim 11(4):709–715. doi:10.1175/1520-0442(1998)011%3C0709:TVTEOH%3E2.0.CO;2

    Article  Google Scholar 

  • Frankignoul C, Deshayes J, Curry R (2009) The role of salinity in the decadal variability of the North Atlantic meridional overturning circulation. Clim Dyn 33(6):777–793. doi:10.1007/s00382-008-0523-2

    Article  Google Scholar 

  • Gent PR, Mcwilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20(1):150–155. doi:10.1175/1520-0485(1990)020%3C0150:IMIOCM%3E2.0.CO;2

    Article  Google Scholar 

  • Gerdes R, Köberle C (1995) On the influence of DSOW in a numerical model of the North Atlantic general circulation. J Phys Oceanogr 25(11):2624–2642. doi:10.1175/1520-0485(1995)025%3C2624:OTIODI%3E2.0.CO;2

    Article  Google Scholar 

  • Getzlaff J, Böning CW, Eden C, Biastoch A (2005) Signal propagation related to the North Atlantic overturning. Geophys Res Lett 21

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic Hurricane activity: causes and implications. Science 293(5529):474–479. doi:10.1126/science.1060040

    Article  Google Scholar 

  • Guemas V, Salas-Mélia D (2008) Simulation of the Atlantic meridional overturning circulation in an atmosphereocean global coupled model. Part I: a mechanism governing the variability of ocean convection in a preindustrial experiment. Clim Dyn 31(1):29–48. doi:10.1007/s00382-007-0336-8

    Article  Google Scholar 

  • Hawkins E, Sutton R (2008) Potential predictability of rapid changes in the Atlantic meridional overturning circulation. Geophys Res Lett 35(11):L11,603+. doi:10.1029/2008GL034059

    Article  Google Scholar 

  • Hirschi J, Marotzke J (2007) Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J Phys Oceanogr 37(3):743–763. doi:10.1175/JPO3019.1

    Article  Google Scholar 

  • Hirschi J, Stocker TF (2002) Rapid changes of the oceanic circulation in a hierarchy of ocean models. Tellus A 54(3):273–287. doi:10.1034/j.1600-0870.2002.00323.x

    Article  Google Scholar 

  • Hirschi J, Baehr J, Marotzke J, Stark J, Cunningham S, Beismann JO (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophys Res Lett 30(7):1413+,603+. doi:10.1029/2002GL016776

    Article  Google Scholar 

  • Hodson DLR, Sutton RT, Cassou C, Keenlyside N, Okumura Y, Zhou T (2009) Climate impacts of recent multidecadal changes in Atlantic Ocean Sea surface temperature: a multimodel comparison. Clim Dyn 34(7–8):1041–1058. doi:10.1007/s00382-009-0571-2

    Google Scholar 

  • Hsieh WW, Davey MK, Wajsowicz RC (1983) The free Kelvin wave in finite-difference numerical models. J Phys Oceanogr 13(8):1383–1397. doi:10.1175/1520-0485(1983)013%3C1383:TFKWIF%3E2.0.CO;2

    Article  Google Scholar 

  • Jochum M, Danabasoglu G, Holland M, Kwon YO, Large WG (2008) Ocean viscosity and climate. J Geophys Res 113(C6):C06,017+. doi:10.1029/2007JC004515

    Article  Google Scholar 

  • Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Rickard GJ, Cusack S, Ingram WJ, Crucifix M, Sexton DMH, Joshi MM, Dong BW, Spencer H, Hill RSR, Gregory JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The New Hadley Centre Climate Model (HadGEM1): evaluation of coupled simulations. J Clim 19(7):1327–1353. doi:10.1175/JCLI3712.1

    Article  Google Scholar 

  • Johnson HL, Marshall DP (2002) A theory for the surface atlantic response to thermohaline variability. J Phys Oceanogr 32(4):1121–1132. doi:10.1175/1520-0485(2002)032%3C1121:ATFTSA%3E2.0.CO;2

    Article  Google Scholar 

  • Köhl A (2005) Anomalies of Meridional Overturning: Mechanisms in the North Atlantic. J Phys Oceanogr 35(8):1455–1472. doi:10.1175/JPO2767.1

    Article  Google Scholar 

  • Kang SM, Frierson DMW, Held IM (2009) The tropical response to extratropical thermal forcing in an idealized GCM: the importance of radiative feedbacks and convective parameterization. J Atmospheric Sci 66:2812–2827

    Article  Google Scholar 

  • Kawase M (1987) Establishment of deep ocean circulation driven by deep-water production. J Phys Oceanogr 17(12):2294–2317. doi:10.1175/1520-0485(1987)017%3C2294:EODOCD%3E2.0.CO;2

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453(7191):84–88. doi:10.1038/nature06921

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32(20):L20,708+. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33(17):L17,706+. doi:10.1029/2006GL026242

    Article  Google Scholar 

  • Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37(1):1–64. doi:10.1029/98RG02739

    Article  Google Scholar 

  • Palter JB, Lozier MS, Lavender KL (2008) How does Labrador Sea water enter the deep western boundary current?. J Phys Oceanogr 38(5):968–983. doi:10.1175/2007JPO3807.1

    Article  Google Scholar 

  • Pohlmann H, Jungclaus JH, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22(14):3926–3938. doi:10.1175/2009JCLI2535.1

    Article  Google Scholar 

  • Robson J, Sutton R, Lohmann K, Smith D, Palmer M (2011) Causes of the rapid warming of the north atlantic ocean in the mid 1990s. J Clim. doi:10.1175/JCLI-D-11-00443.1

  • Roussenov VM, Williams RG, Hughes CW, Bingham RJ (2008) Boundary wave communication of bottom pressure and overturning changes for the North Atlantic. J Geophys Res 113:C08, 042+. doi:10.1029/2007JC004501

    Article  Google Scholar 

  • Schwab D (1998) Propagation of Kelvin waves along irregular coastlines in finite-difference models. Adv Water Resour 22(3):239–245. doi:10.1016/S0309-1708(98)00015-3

    Article  Google Scholar 

  • Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory ME, Donners J, Clark DB, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) U.K. HiGEM: the new U. K. high-resolution global environment model description and basic evaluation. J Clim 22(8):1861–1896. doi:10.1175/2008JCLI2508.1

    Article  Google Scholar 

  • Shaw PT, Csanady GT (1983) Self-advection of density perturbations on a sloping continental shelf. J Phys Oceanogr 13(5):769–782. doi:10.1175/1520-0485(1983)013%3C0769:SAODPO%3E2.0.CO;2

    Article  Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317(5839):796–799. doi:10.1126/science.1139540

    Article  Google Scholar 

  • Smith RS, Gregory JM (2009) A study of the sensitivity of ocean overturning circulation and climate to freshwater input in different regions of the North Atlantic. Geophys Res Lett 36(15):L15, 701+. doi:10.1029/2009GL038607

    Article  Google Scholar 

  • Sutton R, Hodson D (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115–118. doi:10.1126/science.1109496

    Article  Google Scholar 

  • Sutton R, Hodson D (2007) Climate response to a multidecadal warming and cooling of the north atlantic ocean. J Clim 20(5):891–907. doi:10.1175/JCLI4038.1

    Article  Google Scholar 

  • Sutton R, Jewson S, Rowell D (2000) The elements of climate variability in the tropical atlantic region. J Clim 13:3261–3284

    Article  Google Scholar 

  • Terray L, Cassou C (2002) Tropical atlantic sea surface temperature forcing of quasi-decadal climate variability over the north Atlantic-Europe region. J Clim 15(22):3170–3187

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14(16):3433–3443. doi:10.1175/1520-0442(2001)014%3C3433:EOMAAO%3E2.0.CO;2

    Article  Google Scholar 

  • Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17(23):4498–4511

    Article  Google Scholar 

  • Vellinga M, Wood RA, Gregory JM (2002) Processes governing the recovery of a perturbed thermohaline circulation in HadCM3. J Clim 15(7):764–780. doi:10.1175/1520-0442(2002)015%3C0764:PGTROA%3E2.0.CO;2

    Article  Google Scholar 

  • Wunsch C, Heimbach P (2006) Estimated decadal changes in the North Atlantic meridional overturning circulation and heat flux 1993–2004. J Phys Oceanogr 36(11):2012–2024. doi:10.1175/JPO2957.1

    Article  Google Scholar 

  • Zhang D, Msadek R, McPhaden MJ, Delworth T (2011) Multidecadal variability of the North Brazil current and its connection to the Atlantic meridional overturning circulation. J Geophys Res 116(C4):C04,012+. doi:10.1029/2010JC006812

    Article  Google Scholar 

  • Zhang R (2008) Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophysical Research Letters 35:L20,705+. doi:10.1029/2008GL035463

    Google Scholar 

  • Zhang Z, Kang SM, Held IM (2010) Sensitivity of climate change induced by the weakening of the Atlantic meridional overturning circulation to cloud feedback. J Clim 23:378–389

    Article  Google Scholar 

Download references

Acknowledgments

The Authors would like to thank Len Shaffrey and the HiGEM project for use of the HiGEM and HadGEM data in this study and two anonymous Reviewers for their valuable comments which notably improved the manuscript. This work was funded by the UK National Environment Research Council (NERC) Grant no. NE/F018533/1 and by the NERC NCAS-Climate programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. R. Hodson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodson, D.L.R., Sutton, R.T. The impact of resolution on the adjustment and decadal variability of the Atlantic meridional overturning circulation in a coupled climate model. Clim Dyn 39, 3057–3073 (2012). https://doi.org/10.1007/s00382-012-1309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1309-0

Keywords

Navigation