Skip to main content

Advertisement

Log in

Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bala G, Caldeira K, Mirin A, Wickett M, Delire C, Phillips TJ (2006) Biogeophysical effects of CO2 fertilization on global climate. Tellus 58B:620–627. doi:10.1111/j.1600-0889.2006.00210.x

    Google Scholar 

  • Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C et al (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104:6550–6555. doi:10.1073/pnas.0608998104

    Article  Google Scholar 

  • Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–799. doi:10.1038/42924

    Article  Google Scholar 

  • Betts RA, Boucher O, Collins M, Cox PM, Falloon P, Gedney N et al (2007) Future runoff changes due to climate and plant responses to increasing carbon dioxide. Nature 448:1037–1042. doi:10.1038/nature06045

    Article  Google Scholar 

  • Boucher O, Myhre G, Myhre A (2004) Direct influence of irrigation on atmospheric water vapour and climate. Clim Dyn 22:597–603. doi:10.1007/ss00382-004-0402-4

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136. doi:10.1016/0168-1923(91)90002-8

    Article  Google Scholar 

  • Collatz GJ, Ribas-Carbo M, Berry JA (1992) A coupled photosynthesis-stomatal conductance model for leaves of C4 plants. J Plant Physiol 19:519–538

    Google Scholar 

  • Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203. doi:10.1007/s003820050276

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–374. doi:10.1046/j.1365-2486.2001.00383.x

    Article  Google Scholar 

  • Douville H, Planton S, Royer JF, Stephenson DB, Tyteca S, Kergoat L et al (2000) Importance of vegetation feedbacks in doubled-CO2 climate experiments. J Geophys Res 105:14841–14861. doi:10.1029/1999JD901086

    Article  Google Scholar 

  • Field C, Jackson R, Mooney H (1995) Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ 18:1214–1255. doi:10.1111/j.1365-3040.1995.tb00630.x

    Article  Google Scholar 

  • Gedney N, Cox P, Betts RA, Boucher O, Huntingford C, Stott P (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838. doi:10.1038/nature04504

    Article  Google Scholar 

  • Gerten D, Schaphoff S, Lucht W (2007) Potential future changes in water limitations of the terrestrial biosphere. Clim Change 80:277–299. doi:10.1007/s10584-006-9104-8

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC et al (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168. doi:10.1007/s003820050010

    Article  Google Scholar 

  • Gordon LJ, Steffen W, Jönsson BF, Folke C, Falkenmark M, Johannessen A (2005) Human modification of global water vapor flows from the land surface. Proc Natl Acad Sci USA 102:7612–7617. doi:10.1073/pnas.0500208102

    Article  Google Scholar 

  • Hall A (2004) The role of surface albedo feedback in climate. J Clim 17:1550–1568 doi:10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns N, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz JA, Perlwitz JU, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. doi:10.1029/2005JD005776

    Article  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543. doi:10.1029/1999RG000078

    Article  Google Scholar 

  • Hungate BA, Reichstein M, Dijkstra P, Johnson D, Hymus G, Tenhunen JD et al (2002) Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. Glob Change Biol 8:289–298. doi:10.1046/j.1365-2486.2002.00468.x

    Article  Google Scholar 

  • Jacobs C (1994) Direct impacts of atmospheric CO2 enrichment on regional transpiration. Ph.D. thesis, Wageningen Agricultural University

  • Joshi MM, Gregory JM, Webb MJ, Sexton DMH, Johns TC (2007) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30:455–465. doi:10.1007/s00382-007-0306-1

    Article  Google Scholar 

  • Kergoat L, Lafont S, Douville H, Berthelot B, Dedieu G, Planton S et al (2002) Impact of doubled CO2 on global-scale leaf area index and evapotranspiration: conflicting stomatal conductance and LAI responses. J Geophys Res 107(D24):4808. doi:10.1029/2001JD001245

    Article  Google Scholar 

  • Leipprand A, Gerten D (2006) Global effects of doubled atmospheric CO2 content on evapotranspiration, soil moisture and runoff under potential natural vegetation. Hydrol Sci 51:171–185. doi:10.1623/hysj.51.1.171

    Article  Google Scholar 

  • Levis S, Foley J, Pollard D (1999) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys Res Lett 26(6):747–750. doi:10.1029/1999GL900107

    Article  Google Scholar 

  • Liepert BG, Feichter J, Lohmann U, Roeckner E (2004) Can aerosols spin down the water cycle in a warmer and moister world? Geophys Res Lett 31:L06207. doi:10.1029/2003GL019060

    Article  Google Scholar 

  • Lobell DB, Bala G, Duffy PB (2006) Biogeophysical impacts of cropland management changes in climate. Geophys Res Lett 33:L06708. doi:10.1029/2005GL025492

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921. doi:10.1126/science.1114722

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM et al (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Milly PCD, Dunne KA (1994) Sensitivity of the global water cycle to the water-holding capacity of land. J Clim 7:506–526 doi:10.1175/1520-0442(1994)007<0506:SOTGWC>2.0.CO;2

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124. doi:10.1126/science.1064034

    Article  Google Scholar 

  • Santer BD, Wigley TML, Mears C, Wentz FJ, Klein SA, Seidel DJ, Taylor KE, Thorne PW, Wehner MF, Gleckler PJ, Boyle JS, Collins WD, Dixon KW, Doutriaux C, Free M, Fu Q, Hansen JE, Jones GS, Ruedy R, Karl TR, Lanzante JR, Meehl GA, Ramaswamy V, Russell G, Schmidt GA (2005) Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309:1551–1556. doi:10.1126/science.1114867

    Article  Google Scholar 

  • Sellers PJ, Berry J, Collatz G, Field C, Hall F (1992) Canopy reflectance, photosynthesis and transpiration, III. A reanalysis using enzyme kinetics—electron transport models of leaf physiology. Remote Sens Environ 42:187–216. doi:10.1016/0034-4257(92)90102-P

    Article  Google Scholar 

  • Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA, Los SO et al (1996) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1406. doi:10.1126/science.271.5254.1402

    Article  Google Scholar 

  • Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapour. Science 296:727–730. doi:10.1126/science.296.5568.727

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A et al (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, pp 235–336

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Joint Defra and MoD Integrated Climate Programme—GA01101, CBC/2B/0417_Annex C5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Boucher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boucher, O., Jones, A. & Betts, R.A. Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Clim Dyn 32, 237–249 (2009). https://doi.org/10.1007/s00382-008-0459-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0459-6

Keywords

Navigation