Skip to main content

Advertisement

Log in

Potential future changes in water limitations of the terrestrial biosphere

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This study explores the effects of atmospheric CO2 enrichment and climate change on soil moisture (W r ) and biome-level water limitation (L TA), using a dynamic global vegetation and water balance model forced by five different scenarios of change in temperature, precipitation, radiation, and atmospheric CO2 concentration, all based on the same IS92a emission scenario. L TA is defined as an index that quantifies the degree to which transpiration and photosynthesis are co-limited by soil water shortage (high values indicate low water limitation). Soil moisture decreases in many regions by 2071–2100 compared to 1961–1990, though the regional pattern of change differs substantially among the scenarios due primarily to differences in GCM-specific precipitation changes. In terms of L TA, ecosystems in northern temperate latitudes are at greatest risk of increasing water limitation, while in most other latitudes L TA tends to increase (but again varies the regional pattern of change among the scenarios). The frequently opposite direction of change in W r and L TA suggests that decreases in W r are not necessarily felt by actual vegetation, which is attributable mainly to the physiological vegetation response to elevated CO2. Without this beneficial effect, the sign of change in L TA would be reversed from predominantly positive to predominantly negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcamo J, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003) Global estimates of water withdrawals and availability under current and future business-as-usual conditions. Hydrol Sci J 48:339–348

    Article  Google Scholar 

  • Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Glob. Change Biol 1:243–274

    Article  Google Scholar 

  • Arnell NW (2003) Effects of IPCC SRES emission scenarios on river runoff: a global perspective. Hydrol. Earth Syst Sci 7:619–641

    Article  Google Scholar 

  • Arnell NW. Liu C (2001) Hydrology and water resources in McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds), Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 191–233

  • Betts RA, Cox PM, Lee SE, Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387:796–799

    Article  Google Scholar 

  • Betts R, Cox PM, Collins M, Harris PP, Huntingford C, Jones CD (2004) The role of ecosystem – atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming Theor Appl Clim 78, doi:10.1007/s00704-004-0050-y

  • Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol (submitted)

  • Cao MK, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change, Nature 393:249–252

    Article  Google Scholar 

  • Chalecki EL, Gleick PH (1999) A framework of ordered climate effects on water resources: a comprehensive bibliography. J Am Water Assoc, 35:1657–1665

    Google Scholar 

  • Churkina G, Running SW (1998) Contrasting climatic controls on the estimated productivity of global terrestrial biomes Ecosyst 1:206–215

    Article  Google Scholar 

  • Claussen M, Brovkin V, Petoukhov V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land-cover change. Geophys Res Lett 26:1011–1014

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley J, Friend A D, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7:357–373

    Article  Google Scholar 

  • Cramer W, Bondeau A, Schaphoff S, Lucht W, Smith B, Sitch S (2004) Tropical forests and the global carbon cycle: Impacts of atmospheric CO2, climate change and rate of deforestation, Phil Trans Roy Soc B 359:331–343

    Article  Google Scholar 

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant biomass, form, and physiology, Oecologia 113:299–313

    Article  Google Scholar 

  • d'Odorico P, Ridolfi L, Porporato A, Rodriguez-Iturbe I (2000) Preferential states of seasonal soil moisture: the impact of climate fluctuations, Water Resour Res 36:2209–2219

    Article  Google Scholar 

  • Döll P (2002) Impact of climate change and variability on irrigation requirements: a global perspective, Clim. Change 54:269–293

    Google Scholar 

  • Emori S, Nozawa T, Abe-Ouchi A, Numaguti A, Kimoto M (1999) Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulphate aerosol scattering, J Met Soc Japan 77:1299–1307

    Google Scholar 

  • Falkenmark M (1997) Meeting water requirements of an expanding world population, Phil Trans R Soc Lond B 352:929–936

    Google Scholar 

  • FAO (Food and Agriculture Organization): (1991) The Digitized Soil Map of the World (Release 1.0), FAO, Rome

  • Federer CA (1982) Transpirational supply and demand: plant, soil, and atmospheric effects evaluated by simulation. Water Resour Res 18:355–362

    Article  Google Scholar 

  • Flato GM, Boer GJ (2001) Warming asymmetry in climate change simulations, Geophys Res Lett 28:195–198

    Article  Google Scholar 

  • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004a) Terrestrial vegetation and water balance: hydrological evaluation of a dynamic global vegetation model, J Hydrol 286:249–270

    Article  Google Scholar 

  • Gerten D, Bondeau A, Hoff H, Lucht W, Schaphoff S, Smith P (2004b) Assessment of green water fluxes with a Dynamic Global Vegetation Model, in Webb B, Arnell N, Onof C, MacIntyre N, Gurney R, Kirby C. (eds.), Hydrology: Science and Practice for the 21st Century, British Hydrological Society, London, Vol I., pp 29–35

    Google Scholar 

  • Gerten D, Haberlandt U, Cramer W, Erhard M (2005a) Terrestrial carbon and water fluxes, In: Hantel M (ed), Observed Global Climate. Landolt-Börnstein New Series, Group V: Geophysics, Vol. 6, Springer, Berlin, Heidelberg, pp 12-1-12-17

    Google Scholar 

  • Gerten D, Lucht W, Schaphoff S, Cramer W, Hickler T, Wagner, W (2005b) Hydrologic resilience of the terrestrial biosphere. Geophys Res Lett 32:L21408, doi: 10.1029/2005GL024247

  • Gifford RM, Barrett DJ, Lutze JL, Samarakoon A B (2000) The CO2 fertilizing effect: relevance to the global carbon cycle, in Wigley TML, Schimel DS (eds), The carbon cycle, Cambridge University Press, Cambridge, pp 77–92

    Google Scholar 

  • Gitay H, Brown S, Easterling W, Jallow B (2001) Ecosystems and their goods and services, In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds.), Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 235–342.

  • Gordon WS, Famiglietti JS (2004) Response of the water balance to climate change in the United States over the 20th and 21st centuries: results from the VEMAP Phase 2 model intercomparisons. Glob. Biogeochem. Cycles 18 GB 1030, doi:10.1029/2003GB002098

  • Gordon C, Cooper C, Senior CA, Banks HT, Gregory J M, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn 16:147–168

    Google Scholar 

  • Gregory JM, Mitchell JFB, Brady AJ (1997) Summer drought in northern midlatitudes in a time-dependent CO2 climate experiment. J Climate 10:662–686

    Article  Google Scholar 

  • Haxeltine A, Prentice IC (1996a) BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob. Biogeochem. Cycles 10:693–709

    Article  Google Scholar 

  • Haxeltine A, Prentice IC (1996b) A general model for the light-use efficiency of primary production. Funct Ecol 10:551–561

    Article  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change, Nature 424:901–908

    Article  Google Scholar 

  • Hickler T, Prentice IC, Smith B, Sykes, MT (2004) Simulating the effects of elevated CO2 on productivity at the Duke Forest FACE experiment: a test of the dynamic global vegetation model LPJ, In: Hickler T (ed) Towards an integrated ecology through mechanistic modelling of ecosystem structure and functioning, Doctoral Thesis, Lund University, Sweden

  • Hirst AC, Gordon HB, O'Farrell SP (1996) Global warming in a coupled climate model including oceanic eddy-induced advection, Geophys Res Lett 23:3361–3364

    Article  Google Scholar 

  • Houghton JT, Callander BA, Varney SK (eds) (1992) Climate Change 1992: the Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge.

  • Hungate BA, Dukes JS, Shaw R, Luo Y, Field C B (2003) Nitrogen and climate change, Science 302:1512–1513

    Article  Google Scholar 

  • Huntingford C, Monteith JL (1998) The behaviour of a mixed-layer model of the convective boundary layer coupled to a big leaf model of surface energy partitioning. Bound-Lay. Meteorol 88:87–101

    Article  Google Scholar 

  • Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner G-K, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Glob Biogeochem Cycles 15:891–907

    Article  Google Scholar 

  • Kergoat L, Lafont S, Douville H, Berthelot B, Dedieu G, Planton S, Royer J-F (2002) Impact of 2 × CO2 on global scale leaf area index and evapotranspiration: conflicting stomatal and LAI responses. J Geophys Res 107:10.1029/2001JD001245

  • Kimball BA, LaMorte RL, Pinter PJ, Jr, Wall GW, Hunsaker DJ, Adamsen FJ, Leavitt SW, Thompson TL, Matthias AD, Brooks TJ (1999) Free-air CO2-enrichment and soil nitrogen effects on energy balance and evapotranspiration of wheat, Water Resour Res 35:1179–1190

    Article  Google Scholar 

  • Lee D, Veizer J (2003) Water and carbon cycles in the Mississippi River basin: potential implications for the Northern Hemisphere residual terrestrial sink, Glob. Biogeochem Cycles 17:doi:10.1029/2002GB001984

  • Leipprand A, Gerten D (2006) Global effects of doubled atmospheric CO2 content on evapotranspiration, soil moisture, and runoff, Hydrol Sci J, 51:171–185

    Google Scholar 

  • Levis S, Foley JA, Pollard D (2000) Large-scale vegetation feedbacks on a doubled CO2 climate J Clim 13:1313–1325

    Article  Google Scholar 

  • Lockwood JG (1999) Is potential evapotranspiration and its relationship with actual evapotranspiration sensitive to elevated atmospheric CO2 levels? Clim Change 41:193–212

    Article  Google Scholar 

  • Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689

    Article  Google Scholar 

  • McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter D W, Meier RA, Melillo JM, Moore B III, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models, Glob Biogeochem Cycles 15:183–206

    Google Scholar 

  • Medlyn BE, Badeck FW, de Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, de Angelis P, Forstreuter M, Jach ME, Kellomäki, S, Laitat E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, Portier B, Roberntz P, Wang K, Jarvis PG (1999) Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ 22:1475–1495

    Article  Google Scholar 

  • Monteith JL (1995) Accommodation between transpiring vegetation and the convective boundary layer, J. Hydrol 166:251–263

    Article  Google Scholar 

  • Nemani R, White M, Thornton P, Nishida K, Reddy S, Jenkins J, Running S (2002) Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States, Geophys Res Lett 29: doi:10.1029/2002GL014867

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science 300:1560–1563

    Article  Google Scholar 

  • Nepstad D, Lefebvre P, da Silva UL, Tomasella J, Schlesinger P, Solórzano L, Moutinho P, Ray D, Benito JG (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis, Glob Change Biol 10:704–717

    Article  Google Scholar 

  • New M, Hulme M, Jones P (2000)Representing twentieth-century space-time climate variability. Part II: development of 1901–1996 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios, Glob Environ Change 14:53–67

    Article  Google Scholar 

  • Porporato A, Laio F, Ridolfi L, Rodriguez-Iturbe I (2001) Plants in water-controlled ecosystems: active role in hydrological processes and response to water stress. III: Vegetation water stress. Adv Water Res 24:725–744

    Article  Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden M L, Heimann M, Jaramillo VJ, Kheshgi HS, Le Quéré C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide, in Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 183–237.

  • Ridolfi L, D'Odorico P, Porporato A, Rodriguez-Iturbe I (2000) Impact of climate variability on the vegetation water stress. JGeophys Res 105:18013–18025

    Article  Google Scholar 

  • Roeckner E, Oberhuber JM, Bacher A, Christoph M, Kirchner I (1996) ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM. Clim Dyn 12:737–754

    Article  Google Scholar 

  • Sandstrom K (1995) Modeling the effects of rainfall variability on groundwater recharge in semi-arid Tanzania. Nord Hydrol 26:313–330

    Google Scholar 

  • Schaphoff S, Lucht W, Gerten D, Sitch S, Cramer W, Prentice IC. (2006) Terrestrial biosphere carbon storage under alternative climate projections. Clim Change 74, doi: 10.1007/s10584-005-9002-5

  • Sholtis JD, Gunderson CA, Norby RJ, Tissue D T (2004) Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum (Liquidambar styraciflua) forest stand. New Phyt 162:343–354

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K, Venevski S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Article  Google Scholar 

  • Smakhtin V, Revenga C, Döll P (2004) A pilot global assessment of environmental water requirements and scarcity. Water International 29:307–317

    Article  Google Scholar 

  • Smith JAC, Griffiths H (eds) (1993) Water deficits–plant responses from cell to community, Bios Scientific Publ, Oxford

    Google Scholar 

  • Stephenson NL (1990) Climatic control of vegetation distribution: the role of the water balance. Am Nat 135:649–670

    Article  Google Scholar 

  • Thonicke K, Venevski S, Sitch S, Cramer W (2001) The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Glob Ecol Biogeogr 10:661–677

    Article  Google Scholar 

  • Tubiello FN, Ewert F (2002 Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Euro J Agron 18:57–74

    Article  Google Scholar 

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288

    Article  Google Scholar 

  • Wagner W, Scipal K, Pathe C, Gerten D, Lucht W, Rudolf B (2003) Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J. Geophys. Res. 108:4611, doi:10.1029/2003JD003663

    Google Scholar 

  • Wechsung G, Wechsung F, Wall GW, Adamsen FJ, Kimball BA, Pinter PJJr, Lamorte RL, Garcia RL, Kartschall TH (1999) The effects of free-air CO2 enrichment and soil water availability on spatial and seasonal patterns of wheat root growth. Glob Change Biol 5:519–529

  • Wetherald RT, Manabe S (2002) Simulation of hydrologic changes associated with global warming. J Geophys Res 107:4379, doi:10.1029/2001JD001195

  • Xiao J, Moody A (2004) Photosynthetic activity of US biomes: responses to the spatial variability and seasonality of precipitation and temperature. Glob Change Biol 10:1–15

    Article  Google Scholar 

  • Yang Y, Watanabe M, Wang Z, Sakura Y, Tang C (2003) Prediction of changes in soil moisture associated with climatic changes and their implications for vegetation changes: WASVES model simulation on Taihang Mountain. China, Clim Change 57:163–183

    Article  Google Scholar 

  • Zobler L (1986) A world soil file for global climate modelling. NASA Technical Memorandum, 87802

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Gerten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerten, D., Schaphoff, S. & Lucht, W. Potential future changes in water limitations of the terrestrial biosphere. Climatic Change 80, 277–299 (2007). https://doi.org/10.1007/s10584-006-9104-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-006-9104-8

Keywords

Navigation