Skip to main content

Advertisement

Log in

Variability of Fram Strait sea ice export: causes, impacts and feedbacks in a coupled climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Analyses of a 500-year control integration of the global coupled atmosphere–sea ice–ocean model ECHAM5.0/MPI-OM show a high variability in the ice export through Fram Strait on interannual to decadal timescales. This variability is mainly determined by variations in the sea level pressure gradient across Fram Strait and thus geostrophic wind stress. Ice thickness anomalies, formed at the Siberian coast and in the Chukchi Sea, propagate across the Arctic to Fram Strait and contribute to the variability of the ice export on a timescale of about 9 years. Large anomalies of the ice export through Fram Strait cause fresh water signals, which reach the Labrador Sea after 1–2 years and lead to significant changes in the deep convection. The associated anomalies in ice cover and ocean heat release have a significant impact on air temperature in the Labrador Sea and on the large-scale atmospheric circulation. This affects the sea ice transport and distribution in the Arctic again. Sensitivity studies, simulating the effect of large ice exports through Fram Strait, show that the isolated effect of a prescribed ice/fresh water anomaly is very important for the climate variability in the Labrador Sea. Thus, the ice export through Fram Strait can be used for predictability of Labrador Sea climate up to 2 years in advance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aagaard K, Carmack E (1989) The role of sea ice and other fresh water in the Arctic circulation. J Geophys Res 94:14485–14498

    Article  Google Scholar 

  • Alexander M, Bhatt U, Walsh J, Timlin M, Miller J, Scott J (2004) The atmospheric response to realistic Arctic Sea ice anomalies in an AGCM during winter. J Clim 17:890–905

    Article  Google Scholar 

  • Arfeuille G, Mysak L, Tremblay LB (2000) Simulation of the interannual variability of the wind-driven Arctic sea-ice cover during 1958–1998. Clim Dyn 16:107–121

    Article  Google Scholar 

  • Belkin I, Levitus S, Antonov J, Malmberg SA (1998) “Great Salinity Anomalies” in the North Atlantic. Prog Oceanogr 41:1–68

    Article  Google Scholar 

  • Brümmer B, Mueller G, Hober H (2003) A Fram Strait cyclone: properties and impact on ice drift as measured by aircraft and buoys. J Geophys Res 1078(D7):6/1–6/13

    Google Scholar 

  • Delworth TL, Manabe S, Stouffer RJ (1997) Multidecadal climate variability in the Greenland Sea and surrounding regions: a coupled model study. Geophys Res Lett 24 (3):257–260

    Article  Google Scholar 

  • Deser C, Walsh J, Timlin M (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:607–633

    Google Scholar 

  • Deser C, Holland M, Reverdin G, Timlin M (2002) Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperature. J Geophys Res 107(C5). 10129/2000JC0000683

    Google Scholar 

  • Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part 2: direct and indirect components of the response. J Clim 17:2160–2176

    Google Scholar 

  • Dickson R, Meincke J, Malmberg SA, Lee A (1988) The “Great Salinity Anomaly” in the northern North Atlantic, 1968–1982. Prog Oceanogr 20:103–151

    Article  Google Scholar 

  • Dickson R, Osborn T, Hurrel J, Meincke J, Blindheim J, Adlandsvik B, Vinje T, Alekseev G, Maslowski W (2000) The Arctic Ocean response to the North Atlantic oscillation. J Clim 13:2671–2696

    Article  Google Scholar 

  • Goosse H, Fichefet T, Campin JM (1997) The effects of the water flow through the Canadian Archipelago in a global ice-ocean model. Geophys Res Lett. 24(12):1507–1510

    Article  Google Scholar 

  • Goosse H, Selten F, Haarsma R, Opsteegh J (2002) A mechanism of decadal variability of the sea-ice volume in the Northern Hemisphere. Clim Dyn 19:61–83

    Article  Google Scholar 

  • Haak H, Jungclaus J, Mikolajewicz U, Latif M (2003) Formation and propagation of great salinity anomalies. Geophys Res Lett 30(9):26/1–26/4

    Article  Google Scholar 

  • Hagemann S, Dümenil L (1998) A parameterisation of the lateral waterflow for the global scale. Clim Dyn 14(1):17–31

    Article  Google Scholar 

  • Hagemann S, Dümenil-Gates L (2003) Improving a subgrid runoff parameterisation scheme for climate models by the use of high resolution data derived from satellite observations. Clim Dyn 21(3–4):349–359

    Article  Google Scholar 

  • Häkkinen S (1999) A simulation of thermohaline effects of a great salinity anomaly. J Clim 6:1781–1795

    Article  Google Scholar 

  • Hilmer M, Jung T (2000) Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys Res Lett 27(7):989–992

    Article  Google Scholar 

  • Hilmer M, Lemke P (2000) On the Decrease of Arctic Sea Ice Volume. Geophys Res Lett 27(22):3751–3754

    Article  Google Scholar 

  • Hilmer M, Harder M, Lemke P (1998) Sea ice transport:a highly variable link between Arctic and North Atlantic. Geophys Res Lett 25(17):3359–3362

    Article  Google Scholar 

  • Houghton R, Visbeck M (2002) Quasi-decadal salinity fluctuations in the Labrador Sea. J Phys Oceanogr 32:687–701

    Article  Google Scholar 

  • Hurrel J (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Hurrel J, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326

    Article  Google Scholar 

  • Johannessen OM, Myrmehl C, Olsen AM, Hamre T (2002) Ice cover data analysis—Arctic. Technical Report 2, AICSEX

  • Jung T, Hilmer M (2001) The link between the North Atlantic Oscillation and Arctic sea ice export. J Clim 14(19):3932–3943

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18(19):4016–4034

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenn R, Joseph D (1995) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–471

    Article  Google Scholar 

  • Koeberle C, Gerdes R, Kauker F (1999) Mechanisms determining Fram Strait ice export variability. ICES-CM 1999/L:25, 7 pp

  • Kwok R, Rothrock DA (1999) Variability of Fram Strait ice flux and North Atlantic Oscillation. J Geophys Res 104(C3):5177–5189

    Article  Google Scholar 

  • Latif M, Roeckner E, Botzet M, Esch M, Haak H, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U, Mitchell J (2004) Reconstructing monitoring and predicting multidecadal scale changes in the North Atlantic thermohaline circulation with sea surface temperatures. J Clim 17(7):1605–1614

    Article  Google Scholar 

  • Lazier J (1995) The salinity decrease in the Labrador Sea over the past thirty years. In: Martinson DG, Bryan K, Ghil M, Hall MM, Karl TM, Sarachik ES, Sorooshian S, Talley L (eds) Natural climate variability on decade-to-century time scales. National Academic, Washington DC, pp 295–304

    Google Scholar 

  • Magnusdottir G, Deser C, Saravanan R (2004) The Effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3:Part 1:Main features and storm track characteristics of the response. J Clim 17(5):857–876

    Article  Google Scholar 

  • Marsland S, Haak H, Jungclaus J, Latif M, Roeske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127

    Article  Google Scholar 

  • Murray R, Simmonds I (1995) Responses of climate and cyclones to reductions in Arctic winter sea ice. J Geophys Res 100(C3):4791–4806

    Article  Google Scholar 

  • Mysak L, Venegas S (1998) Decadal climate oscillations in the Arctic: a new feedback loop for atmosphere-ice-ocean interactions. Geophys Res Lett 25(19):3607–3610

    Article  Google Scholar 

  • Polyakov I, Johnson M (2000) Arctic decadal and interdecadal variability. Geophys Res Lett 27(24):4097–4100

    Article  Google Scholar 

  • Power S, Moore D, Post N, Smith N, Kleemann R (1994) Stability of North Atlantic deep water formation in a global ocean general circulation model. J Phys Oceanogr 24:904–916

    Article  Google Scholar 

  • Proshutinsky A, Johnson M (1997) Two circulation regimes of the wind-driven Arctic Ocean. J Geophys Res 102(C6):12493–12514

    Article  Google Scholar 

  • Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmosphere general circulation model ECHAM5, part 1:Model description. Max-Planck-Institut fuer Meteorologie, Report no. 349, p 127

  • Schmith T, Hansen C (2003) Fram Strait ice export during the 19th and 20th centuries: evidence for multidecadal variability. J Clim 16(16):2782–2791

    Article  Google Scholar 

  • Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with highquality Arctic Ocean. J Clim 14:2079–2087

    Article  Google Scholar 

  • Terray L, Valcke S, Piacentini A (1998) OASIS 2.2, ocean atmosphere sea ice soil user’s guide and reference manual. Technical Report TR/CGMC/98–05, Centre Europeen de Recherche et de Formation en Calcul Scientifique Avance (CERFACS), Toulouse, France

  • Tremblay LB, Mysak L (1998) On the origin and evolution of sea-ice anomalies in the Beaufort-Chukchi Sea. Clim Dyn 14:451–460

    Article  Google Scholar 

  • Venegas S, Mysak L (2000) Is there a dominant timescale of natural climate variability in the Arctic? J Clim 13:3413–3434

    Article  Google Scholar 

  • Vinje T (2001) Fram Strait ice fluxes and atmospheric circulation 1950–2000. J Clim 14:3508–3517

    Article  Google Scholar 

  • Vinje T, Nordlund N, Kvambeck A (1998) Monitoring ice thickness in Fram Strait. J Geophys Res 103:10437–10449

    Article  Google Scholar 

  • Walsh J, Chapman W (1990) Arctic contribution to upper ocean variability in the North Atlantic. J Clim 3(12):1462–1473

    Article  Google Scholar 

  • Wang J, Ikeda M (2000) Arctic oscillation and Arctic sea ice oscillation. Geophys Res Lett 27(9):1287–1290

    Article  Google Scholar 

  • Weatherly J, Briegleb B, Large W, Maslanik J (1998) Sea ice and polar climate in the NCARCSM. J Clim 11:1472–1486

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 512. The computations have been performed by the Deutsches Klima Rechenzentrum (DKRZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben Koenigk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenigk, T., Mikolajewicz, U., Haak, H. et al. Variability of Fram Strait sea ice export: causes, impacts and feedbacks in a coupled climate model. Clim Dyn 26, 17–34 (2006). https://doi.org/10.1007/s00382-005-0060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0060-1

Keywords

Navigation