Skip to main content

Advertisement

Log in

Classical and real-time neuronavigation in pediatric neurosurgery

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Neuronavigation has become a cornerstone of neurosurgery. Navigation systems are categorized into two main groups: those based on preoperative imaging and those based on real-time intraoperative acquired images.

Objectives

The preoperative imaging systems, either computed tomography (CT)- or magnetic resonance imaging (MRI)-based, are straight-forward systems that are routinely used in most institutions. Image accuracy, however, decreases secondary to brain and lesion shifts that occur during surgery. Intraoperative, real-time navigation systems overcome anatomical shifts by updating the image base of the navigation during surgery, thus, maintaining precise navigation capabilities throughout the surgical procedure.

Conclusions

In this article, we review the main neuronavigation systems and their applications, emphasizing their unique advantages and usage within the pediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alberti O, Riegel T, Hellwig D, Bertalanffy H (2001) Frameless navigation and endoscopy. J Neurosurg 95(3):541–543

    PubMed  CAS  Google Scholar 

  2. Barnett GH (2002) Intraoperative magnetic resonance imaging. Contemp Neurosurg 24:1–6

    Google Scholar 

  3. Bernays RL, Kollias SS, Khan N, Brandner S, Meier S, Yonekawa Y (2002) Histological yield, complications, and technological considerations in 114 consecutive frameless stereotactic biopsy procedures aided by open intraoperative magnetic resonance imaging. J Neurosurg 97(2):354–362

    PubMed  Google Scholar 

  4. Bernstein M, Al-Anazi AR, Kucharczyk W, Manninen P, Bronskill M, Henkelman M (2000) Brain tumor surgery with the Toronto open magnetic resonance imaging system: preliminary results for 36 patients and analysis of advantages, disadvantages, and future prospects. Neurosurgery 46(4):900–907

    Article  PubMed  CAS  Google Scholar 

  5. Black PM, Moriarty T, Alexander E 3rd, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41(4):831–842

    Article  PubMed  CAS  Google Scholar 

  6. Black PM, Alexander E, 3rd, Martin C, Moriarty T, Nabavi A, Wong TZ, Schwartz RB, Jolesz F (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45(3):423–431

    Article  PubMed  CAS  Google Scholar 

  7. Black PM (2000) The present and future of cerebral tumor surgery in children. Childs Nerv Syst 16(10–11):821–828

    Article  PubMed  CAS  Google Scholar 

  8. Bonsanto MM, Staubert A, Wirtz CR, Tronnier V, Kunze S (2001) Initial experience with an ultrasound-integrated single-RACK neuronavigation system. Acta Neurochir (Wien) 143(11):1127–1132

    Article  CAS  Google Scholar 

  9. Brenner D, Elliston C, Hall E, Berdon W (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 176(2):289–296

    PubMed  CAS  Google Scholar 

  10. Cohen KJ, Broniscer A, Glod J (2001) Pediatric glial tumors. Curr Treat Options Oncol 2(6):529–536

    Article  PubMed  CAS  Google Scholar 

  11. Gil Z, Siomin V, Beni-Adani L, Sira B, Constantini S (2002) Ventricular catheter placement in children with hydrocephalus and small ventricles: the use of a frameless neuronavigation system. Childs Nerv Syst 18(1–2):26–29

    Article  PubMed  Google Scholar 

  12. Grunert P, Muller-Forell W, Darabi K, Reisch R, Busert C, Hopf N, Perneczky A (1998) Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg 3(4):166–173

    PubMed  CAS  Google Scholar 

  13. Gumprecht H, Trost HA, Lumenta CB (2000) Neuroendoscopy combined with frameless neuronavigation. Br J Neurosurg 14(2):129–131

    Article  PubMed  CAS  Google Scholar 

  14. Gumprecht H, Lumenta CB (2003) Intraoperative imaging using a mobile computed tomography scanner. Minim Invasive Neurosurg 46(6):317–322

    Article  PubMed  CAS  Google Scholar 

  15. Gwinn R, Cleary K, Medlock M (2000) Use of a portable CT scanner during resection of subcortical supratentorial astrocytomas of childhood. Pediatr Neurosurg 32(1):37–43

    Article  PubMed  CAS  Google Scholar 

  16. Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z (2001) Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 48(4):799–807

    Article  PubMed  CAS  Google Scholar 

  17. Hadani M, Schulder M, Bernays RL (2002) Compact 0.12-Tesla intraoperative magnetic resonance image guidance system in the standard operating room. Tech Neurosurg 7(4):252–264

    Article  Google Scholar 

  18. Hall P, Adami HO, Trichopoulos D, Pedersen NL, Lagiou P, Ekbom A, Ingvar M, Lundell M, Granath F (2004) Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study. BMJ 328(7430):19

    Article  PubMed  Google Scholar 

  19. Kanner AA, Vogelbaum MA, Mayberg MR, Weisenberger JP, Barnett GH (2002) Intracranial navigation by using low-field intraoperative magnetic resonance imaging: preliminary experience. J Neurosurg 97(5):1115–1124

    PubMed  Google Scholar 

  20. Karlsson P, Holmberg E, Lundell M, Mattsson A, Holm LE, Wallgren A (1998) Intracranial tumors after exposure to ionizing radiation during infancy: a pooled analysis of two Swedish cohorts of 28,008 infants with skin hemangioma. Radiat Res 150(3):357–364

    Article  PubMed  CAS  Google Scholar 

  21. Kollias SS, Bernays RL (2001) Interactive magnetic resonance imaging-guided management of intracranial cystic lesions by using an open magnetic resonance imaging system. J Neurosurg 95(1):15–23

    PubMed  CAS  Google Scholar 

  22. Lancon JA, Killough KR, Dhillon G, Parent AD (1999) Interventional magnetic resonance imaging guided aspiration and biopsy of a cystic midbrain tumor. Pediatr Neurosurg 30(3):151–156

    Article  PubMed  CAS  Google Scholar 

  23. Levivier M, Wikler D, De Witte O, Van de Steene A, Baleriaux D, Brotchi J (2003) PoleStar N-10 low-field compact intraoperative magnetic resonance imaging system with mobile radiofrequency shielding. Neurosurgery 53(4):1001–1006

    Article  PubMed  Google Scholar 

  24. Matula C, Rossler K, Reddy M, Schindler E, Koos WT (1998) Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow. Comput Aided Surg 3(4):174–182

    Article  PubMed  CAS  Google Scholar 

  25. Nakao N, Nakai K, Itakura T (2003) Updating of neuronavigation based on images intraoperatively acquired with a mobile computerized tomographic scanner: technical note. Minim Invasive Neurosurg 46(2):117–120

    Article  PubMed  CAS  Google Scholar 

  26. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47(5):1070–1079; discussion 1079–1080

    Article  PubMed  CAS  Google Scholar 

  27. Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R (2001) Intraoperative compensation for brain shift. Surg Neurol 56(6):357–364

    Article  PubMed  CAS  Google Scholar 

  28. Nimsky C, Ganslandt O, Gralla J, Buchfelder M, Fahlbusch R (2003) Intraoperative low-field magnetic resonance imaging in pediatric neurosurgery. Pediatr Neurosurg 38(2):83–89

    Article  PubMed  Google Scholar 

  29. Rhoten RL, Luciano MG, Barnett GH (1997) Computer-assisted endoscopy for neurosurgical procedures: technical note. Neurosurgery 40(3):632–637

    Article  PubMed  CAS  Google Scholar 

  30. Rohde V, Reinges MH, Krombach GA, Gilsbach JM (1998) The combined use of image-guided frameless stereotaxy and neuroendoscopy for the surgical management of occlusive hydrocephalus and intracranial cysts. Br J Neurosurg 12(6):531–538

    Article  PubMed  CAS  Google Scholar 

  31. Roth J, Beni-Adani L, Biyani N, Constantini S (2006) Intraoperative 0.12-Tesla portable MRI in pediatric neurosurgery. Pediatr Neurosurg 42(2):74–80

    Article  PubMed  Google Scholar 

  32. Samdani AF, Schulder M, Catrambone JE, Carmel PW (2005) Use of a compact intraoperative low-field magnetic imager in pediatric neurosurgery. Childs Nerv Syst 21(2):108–113

    Article  PubMed  Google Scholar 

  33. Schicho K, Figl M, Donat M, Birkfellner W, Seemann R, Wagner A, Bergmann H, Ewers R (2005) Stability of miniature electromagnetic tracking systems. Phys Med Biol 50(9):2089–2098

    Article  PubMed  Google Scholar 

  34. Schulder M, Liang D, Carmel PW (2001) Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 94(6):936–945

    Article  PubMed  CAS  Google Scholar 

  35. Steinmeier R, Fahlbusch R, Ganslandt O, Nimsky C, Buchfelder M, Kaus M, Heigl T, Lenz G, Kuth R, Huk W (1998) Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43(4):739–747

    Article  PubMed  CAS  Google Scholar 

  36. Strowitzki M, Kiefer M, Steudel WI (2002) A new method of ultrasonic guidance of neuroendoscopic procedures. Technical note. J Neurosurg 96(3):628–632

    PubMed  Google Scholar 

  37. Suess O, Kombos T, Kurth R, Suess S, Mularski S, Hammersen S, Brock M (2001) Intracranial image-guided neurosurgery: experience with a new electromagnetic navigation system. Acta Neurochir (Wien) 143(9):927–934

    Article  CAS  Google Scholar 

  38. Sutherland GR, Kaibara T, Louw DF (2003) Intraoperative MR at 1.5 Tesla-experience and future directions. Acta Neurochir Suppl 85:21–28

    PubMed  CAS  Google Scholar 

  39. Tronnier V, Bonsanto MM, Staubert A, Knauth M, Kunze S, Wirtz CR (2001) Comparison of intraoperative MR imaging and 3D-navigated ultrasonography in the detection and resection control of lesions. Neurosurg Focus 10(2):1–5

    Article  Google Scholar 

  40. Unsgaard G, Gronningsaeter A, Ommedal S, Nagelhus Hernes TA (2002) Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery 51(2):402–411

    Article  PubMed  Google Scholar 

  41. Unsgaard G, Ommedal S, Muller T, Gronningsaeter A, Nagelhus Hernes TA (2002) Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery 50(4):804–812

    Article  PubMed  Google Scholar 

  42. Vougioukas VI, Hubbe U, Hochmuth A, Gellrich NC, van Velthoven V (2003) Perspectives and limitations of image-guided neurosurgery in pediatric patients. Childs Nerv Syst 19(12):783–791

    Article  PubMed  Google Scholar 

  43. Wagner W, Gaab MR, Schroeder HW, Sehl U, Tschiltschke W (1999) Experiences with cranial neuronavigation in pediatric neurosurgery. Pediatr Neurosurg 31(5):231–236

    Article  PubMed  CAS  Google Scholar 

  44. Wirtz CR, Knauth M, Staubert A, Bonsanto MM, Sartor K, Kunze S, Tronnier VM (2000) Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery 46(5):1112–1120

    Article  PubMed  CAS  Google Scholar 

  45. Zaaroor M, Bejerano Y, Weinfeld Z, Ben-Haim S (2001) Novel magnetic technology for intraoperative intracranial frameless navigation: in vivo and in vitro results. Neurosurgery 48(5):1100–1107; discussion 1107–1108

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shlomi Constantini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, J., Beni-Adani, L., Biyani, N. et al. Classical and real-time neuronavigation in pediatric neurosurgery. Childs Nerv Syst 22, 1065–1071 (2006). https://doi.org/10.1007/s00381-006-0103-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-006-0103-x

Keywords

Navigation