Skip to main content

Multimodality Navigation in Neurosurgery

  • Chapter
  • First Online:
Intraoperative Imaging and Image-Guided Therapy

Abstract

Navigation systems are commonly used in neurosurgical operating theaters. In addition to the anatomic magnetic resonance (MR) images, functional information can now also be displayed. This includes structures at risk such as eloquent cortical sites (demonstrated by functional MRI – fMRI) or fiber bundles (demonstrated by fiber tractography). Furthermore positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance spectroscopic imaging (MRSI) enable the visualization of metabolic changes. Their combined display is called multimodality navigation, which has proven to be a beneficial tool to achieve maximum safe resection of intracerebral lesions. To date, this concept of maximum resection with a preservation of neurological function is accepted not only for benign lesions but also for low- and high-grade gliomas. A major addition to the multimodal navigation setup is intraoperative MRI followed by update of the navigation by rigid registration of the pre- with the intraoperative image data. In this way, brain deformations due to loss of cerebrospinal fluid, tumor resection, use of retractors, or edema which is commonly known as brain shift can be compensated for.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiegel EA, Wycis HAT, Marks M, Lee A. Stereotactic apparatus for operations on the human brain. Science. 1947;106:349–50.

    Article  CAS  PubMed  Google Scholar 

  2. Leksell L. Stereotactic apparatus for intracerebral surgery. Acta Chir Scand. 1949;99:229–33.

    Google Scholar 

  3. Talairach J, Hecaen M, David M, Monnier M, Ajuriaguerra J. Recherches sur la coagulation therapeutique des structures sous-corticales chez l’homme. Rev Neurol. 1949;81:4–24.

    Google Scholar 

  4. Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery. Surg Neurol. 1987;27(6):543–7.

    Article  CAS  PubMed  Google Scholar 

  5. Giorgi C, Luzzara M, Casolino DS, Ongania E. A computer controlled stereotactic arm: virtual reality in neurosurgical procedures. Acta Neurochir Suppl (Wien). 1993;58:75–6.

    CAS  PubMed  Google Scholar 

  6. Reinhardt H, Meyer H, Amrein E. A computer-assisted device for the intraoperative CT-correlated localization of brain tumors. Eur Surg Res. 1988;20(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  7. Nimsky C, Ganslandt O, Buchfelder M, Fahlbusch R. Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res. 2006;28(5):482–7.

    Article  PubMed  Google Scholar 

  8. Nimsky C, Ganslandt O, Fahlbusch R. 1.5 T: intraoperative imaging beyond standard anatomic imaging. Neurosurg Clin N Am. 2005;16(1):185–200; vii.

    Article  PubMed  Google Scholar 

  9. Nimsky C, Ganslandt O, Kober H, Buchfelder M, Fahlbusch R. Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery. 2001;48(5):1082–9; discussion 1089–91.

    Article  CAS  PubMed  Google Scholar 

  10. Schneider F. Funktionelle MRT, in psychiatrie und neurologie. Berlin: Springer; 2006.

    Google Scholar 

  11. Wu JS, Zhou LF, Chen W, et al. Prospective comparison of functional magnetic resonance imaging and intraoperative motor evoked potential monitoring for cortical mapping of primary motor areas. Zhonghua Wai Ke Za Zhi. 2005;43(17):1141–5.

    PubMed  Google Scholar 

  12. Tharin S, Golby A. Functional brain mapping and its applications to neurosurgery. Neurosurgery. 2007;60(4 Suppl 2):185–201; discussion 201–182.

    PubMed  Google Scholar 

  13. Gasser T, Szelenyi A, Senft C, et al. Intraoperative MRI and functional mapping. Acta Neurochir Suppl. 2011;109:61–5.

    Article  PubMed  Google Scholar 

  14. Forster MT, Hattingen E, Senft C, Gasser T, Seifert V, Szelenyi A. Navigated transcranial magnetic stimulation and functional magnetic resonance imaging – advanced adjuncts in preoperative planning for central region tumors. Neurosurgery. 2011;68:1317–24.

    PubMed  Google Scholar 

  15. Ganslandt O, Fahlbusch R, Nimsky C, et al. Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg. 1999;91(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  16. Grummich P, Nimsky C, Pauli E, Buchfelder M, Ganslandt O. Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage. 2006;32(4):1793–803.

    Article  PubMed  Google Scholar 

  17. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med. 1999;42(3):526–40.

    Article  CAS  PubMed  Google Scholar 

  19. Merhof D, Richter M, Enders F, et al. Fast and accurate connectivity analysis between functional regions based on DT-MRI. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):225–33.

    PubMed  Google Scholar 

  20. Coenen VA, Krings T, Mayfrank L, et al. Three-dimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note. Neurosurgery. 2001;49(1):86–92; discussion 92–83.

    CAS  PubMed  Google Scholar 

  21. Nimsky C, Ganslandt O, Weigel D. Intraoperative tractography and neuronavigation of the pyramidal tract. Jpn J Neurosurg. 2008;17: 21–6.

    Google Scholar 

  22. Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61(5):935–48; discussion 948–39.

    Article  PubMed  Google Scholar 

  23. Chen X, Weigel D, Ganslandt O, Buchfelder M, Nimsky C. Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery. Neuroimage. 2009;45(2):286–97.

    Article  PubMed  Google Scholar 

  24. Nimsky C, Ganslandt O, Hastreiter P, et al. Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery. 2005;56(1):130–7; discussion 138.

    PubMed  Google Scholar 

  25. Nimsky C, Ganslandt O, Hastreiter P, et al. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures – initial experience. Radiology. 2005;234(1):218–25.

    Article  PubMed  Google Scholar 

  26. Hall WA, Kowalik K, Liu H, Truwit CL, Kucharezyk J. Costs and benefits of intraoperative MR-guided brain tumor resection. Acta Neurochir Suppl. 2003;85:137–42.

    Article  CAS  PubMed  Google Scholar 

  27. Stadlbauer A, Nimsky C, Buslei R, et al. Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. Neuroimage. 2007;34(3):949–56.

    Article  PubMed  Google Scholar 

  28. Gasser T, Ganslandt O, Sandalcioglu E, Stolke D, Fahlbusch R, Nimsky C. Intraoperative functional MRI: implementation and preliminary experience. Neuroimage. 2005;26(3):685–93.

    Article  PubMed  Google Scholar 

  29. Gruber S, Stadlbauer A, Mlynarik V, Gatterbauer B, Roessler K, Moser E. Proton magnetic resonance spectroscopic imaging in brain tumor diagnosis. Neurosurg Clin N Am. 2005;16(1):101–14; vi.

    Article  PubMed  Google Scholar 

  30. Moller-Hartmann W, Herminghaus S, Krings T, et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology. 2002;44(5): 371–81.

    Article  CAS  PubMed  Google Scholar 

  31. Papanagiotou P, Backens M, Grunwald IQ, et al. MR spectroscopy in brain tumors. Radiologe. 2007;47(6):520–9.

    Article  CAS  PubMed  Google Scholar 

  32. Hall WA, Martin A, Liu H, Truwit CL. Improving diagnostic yield in brain biopsy: coupling spectroscopic targeting with real-time needle placement. J Magn Reson Imaging. 2001;13(1):12–5.

    Article  CAS  PubMed  Google Scholar 

  33. Martin AJ, Liu H, Hall WA, Truwit CL. Preliminary assessment of turbo spectroscopic imaging for targeting in brain biopsy. AJNR Am J Neuroradiol. 2001;22(5):959–68.

    CAS  PubMed  Google Scholar 

  34. Stadlbauer A, Nimsky C, Buslei R, et al. Proton magnetic resonance spectroscopic imaging in the border zone of gliomas: correlation of metabolic and histological changes at low tumor infiltration – initial results. Invest Radiol. 2007;42(4):218–23.

    Article  PubMed  Google Scholar 

  35. Stadlbauer A, Moser E, Gruber S, et al. Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. Neuroimage. 2004;23(2):454–61.

    Article  PubMed  Google Scholar 

  36. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.

    Article  CAS  PubMed  Google Scholar 

  37. Stadlbauer A, Polking E, Prante O, et al. Detection of tumour invasion into the pyramidal tract in glioma patients with sensorimotor deficits by correlation of (18)F-fluoroethyl-L: -tyrosine PET and magnetic resonance diffusion tensor imaging. Acta Neurochir (Wien). 2009;151(9):1061–9.

    Article  PubMed  Google Scholar 

  38. Barnett GH, Miller DW, Weisenberger J. Frameless stereotaxy with scalp-applied fiducial markers for brain biopsy procedures: experience in 218 cases. J Neurosurg. 1999;91(4):569–76.

    Article  CAS  PubMed  Google Scholar 

  39. Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seifert V. Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery. 2002;50(4):797–801; discussion 802–803.

    Article  PubMed  Google Scholar 

  40. Kozak J, Nesper M, Fischer M, et al. Semiautomated registration using new markers for assessing the accuracy of a navigation system. Comput Aided Surg. 2002;7(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  41. Rachinger J, von Keller B, Ganslandt O, Fahlbusch R, Nimsky C. Application accuracy of automatic registration in frameless stereotaxy. Stereotact Funct Neurosurg. 2006;84(2–3):109–17.

    Article  PubMed  Google Scholar 

  42. Nabavi A, Black PM, Gering DT, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery. 2001;48(4):787–97; discussion 797–98.

    CAS  PubMed  Google Scholar 

  43. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery. 2000;47(5):1070–9; discussion 1079–80.

    Article  CAS  PubMed  Google Scholar 

  44. Hastreiter P, Rezk-Salama C, Soza G, et al. Strategies for brain shift evaluation. Med Image Anal. 2004;8(4):447–64.

    Article  PubMed  Google Scholar 

  45. Nimsky C, Ganslandt O, Hastreiter P, Fahlbusch R. Intraoperative compensation for brain shift. Surg Neurol. 2001;56(6):357–64; discussion 364–5.

    Article  CAS  PubMed  Google Scholar 

  46. Wirtz CR, Bonsanto MM, Knauth M, et al. Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience. Comput Aided Surg. 1997;2(3–4):172–9.

    CAS  PubMed  Google Scholar 

  47. Hall WA, Martin AJ, Liu H, et al. High-field strength interventional magnetic resonance imaging for pediatric neurosurgery. Pediatr Neurosurg. 1998;29(5):253–9.

    Article  CAS  PubMed  Google Scholar 

  48. Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J. A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg. 1999;91(5):804–13.

    Article  CAS  PubMed  Google Scholar 

  49. Nimsky C, Ganslandt O, Von Keller B, Romstock J, Fahlbusch R. Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology. 2004;233(1):67–78.

    Article  PubMed  Google Scholar 

  50. Studholme C, Hill DL, Hawkes DJ. Automated 3-D registration of MR and CT images of the head. Med Image Anal. 1996;1(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  51. Thevanaz P, Unser M. A pyramid approach to sub-pixel image fusion based on mutual information. Proc IEEE Int Conf Image Processing. 1996;1:265–8.

    Article  Google Scholar 

  52. Archip N, Clatz O, Whalen S, et al. Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage. 2007;35(2):609–24.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wolf M, Vogel T, Weierich P. Automatic transfer of preoperative fMRI markers into intraoperative MR-images for updating neuronavigation. IEICE Trans Inf Syst. 2001;E84-D:1698–704.

    Google Scholar 

  54. Tirakotai W, Miller D, Heinze S, Benes L, Bertalanffy H, Sure U. A novel platform for image-guided ultrasound. Neurosurgery. 2006;58(4):710–8; discussion 710–8.

    Article  PubMed  Google Scholar 

  55. Rasmussen Jr IA, Lindseth F, Rygh OM, et al. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien). 2007;149(4):365–78.

    Article  PubMed  Google Scholar 

  56. Arbel T, Morandi X, Comeau RM, Collins DL. Automatic non-linear MRI-ultrasound registration for the correction of intra-operative brain deformations. Comput Aided Surg. 2004;9(4):123–36.

    PubMed  Google Scholar 

  57. Roberts DW, Miga MI, Hartov A, et al. Intraoperatively updated neuroimaging using brain modeling and sparse data. Neurosurgery. 1999;45(5):1199–206; discussion 1206–7.

    Article  CAS  PubMed  Google Scholar 

  58. Ding S, Miga MI, Thompson RC, Dumpuri P, Cao A, Dawant BM. Estimation of intra-operative brain shift using a tracked laser range scanner. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:848–51.

    PubMed  Google Scholar 

  59. Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R. Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage. 2006;30(4):1219–29.

    Article  PubMed  Google Scholar 

  60. Tuch D. Q-ball imaging. Magn Reson Med. 2004;52(6):1358–72.

    Article  PubMed  Google Scholar 

  61. Clark CA, Barrick TR, Murphy MM, Bell BA. White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? Neuroimage. 2003;20(3):1601–8.

    Article  PubMed  Google Scholar 

  62. Benner T, Wang R, Wedeen VJ. Diffusion tensor imaging of the brain. In: Schonberg SO, Dietrich O, Reiser MF, editors. Parallel imaging in clinical MR applications. Berlin/Heidelberg: Springer; 2007.

    Google Scholar 

  63. Stadlbauer A, Moser E, Gruber S, Nimsky C, Fahlbusch R, Ganslandt O. Integration of biochemical images of a tumor into frameless stereotaxy achieved using a magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set. J Neurosurg. 2004;101(2):287–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Nimsky MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuhnt, D., Bauer, M.H.A., Nimsky, C. (2014). Multimodality Navigation in Neurosurgery. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_36

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics