Skip to main content

Functional Neuronavigation

  • Chapter
  • First Online:
Clinical Functional MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 1259 Accesses

Abstract

Functional neuronavigation is based on the visualization of functional images within a surgical tracking system. This and other developing techniques help the neurosurgeon to tailor surgical procedures in order to increase diagnostic yield and to preserve brain function while maximizing the necessary extent of resection. The final goal is to improve postoperative survival and quality of life. A major advantage of functional imaging, over other functional brain mapping techniques, such as direct cortical stimulation (Electrical Cortical Stimulation, ECS) is its non-invasiveness. Furthermore, availability of functional information to the surgeon and patient prior to surgery provides insight not only into a better evaluation of the procedure’s indication, but also into the planning of a function preserving operation including the most appropriate surgical access to the respective brain areas. In order to implement functional neuronavigation into the daily clinical routine, optimized imaging protocols are indispensable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albaugh DL, Shih Y-YI (2014) Neural circuit modulation during deep brain stimulation at the subthalamic nucleus for Parkinson’s disease: what have we learned from neuroimaging studies. Brain Connect 4(1):1–14

    PubMed  PubMed Central  Google Scholar 

  • Alexander E III, Maciunas RJ (1998) Advanced neurosurgical navigation. Thieme, Stuttgart

    Google Scholar 

  • Alfonso-Garcia A, Bec J, Weaver SS et al (2019) Real-time augmented reality for delineation of surgical margins during neurosurgery using autofluorescence lifetime contrast. J Biophotonics 13:e2019001008

    Google Scholar 

  • Ammirati M, Gross JD, Ammirati G, Dugan S (2002) Comparison of registration accuracy of skin- and bone-implanted fiducials for frameless stereotaxis of the brain: a prospective study. Skull Base 12(3):125–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Aschke M, Wirtz CR, Raczkowsky J et al (2003) Augmented reality in operating microscopes for neurosurgical interventions. Proc IEEE:652–655

    Google Scholar 

  • Athmaca M (2013) The effect of psychopharmacologic and therapeutic approaches on neuro-imaging in obsessive compulsive disorder. Curr Neuropharmacol 11:109–113

    Google Scholar 

  • Ballesteros-Zebadúa P, García-Garduño OA, Galván de la Cruz OO, Arellano-Reynoso A, Lárraga-Gutiérrez JM, Celis MA (2016) Assessment of an image guided neurosurgery system using a head phantom. Br J Neurosurg 30(6):606–610

    Article  PubMed  Google Scholar 

  • Bathia KD, Henderson L, Ramsey-Stewart G et al (2012) Diffusion tensor imaging to aid subgenual cingulum target selection for deep brain stimulation in depression. Stereotact Funct Neurosurg 90:225–232

    Article  Google Scholar 

  • Belliveau JW, Kennedy DN, McKinstry RC et al (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  CAS  PubMed  Google Scholar 

  • Belliveau JW, Kwong KK, Kennedy DN et al (1992) Magnetic resonance imaging mapping for brain function. Human visual cortex. Investig Radiol 27:S59–S65

    Article  Google Scholar 

  • Benson RR, FitzGerald DB, LeSueur LL et al (1999) Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology 52:798–809

    Article  CAS  PubMed  Google Scholar 

  • Bestmann S, Feredoes E (2013) Combined neurostimulation and neuroimaging in cognitive neuroscience: past present and future. Ann N Y Acad Sci 1296:11–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Binder JR, Rao SM, Hammeke TA et al (1994) Functional magnetic resonance imaging of human auditory cortex. Ann Neurol 35:662–672

    Article  CAS  PubMed  Google Scholar 

  • Binder JR, Swanson SJ, Hammeke TA et al (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46:978–984

    Article  CAS  PubMed  Google Scholar 

  • Bittar RG, Olivier A, Sadikot AF et al (2000) Cortical and somatosensory representation: effect of cerebral lesions. J Neurosurg 92:242–248

    Article  CAS  PubMed  Google Scholar 

  • Black PM, Moriarty TM, Alexander EA III et al (1997) The development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41:831–845

    Article  CAS  PubMed  Google Scholar 

  • Black DF et al (2017) American Society of Functional Neuroradiology-recommended fMRI paradigm algorithms for presurgical language assessment. AJNR Am J Neuroradiol 38:65–73

    Article  Google Scholar 

  • Blankenburg F, Ruff CC, Bestmann S et al (2010) Studying the role of the parietal cortex in visuospatial attention with concurrent TMS-fMRI. Cereb Cortex 20:2711

    Article  Google Scholar 

  • Brinker T, Arango G, Kaminsky J, Samii A, Thomas U, Vokapic P, Samii M (1998) An experimental approach to image guided skull base surgery employing a microscope-based neuronavigation system. Acta Neurochir 140(9):883–889

    Article  CAS  PubMed  Google Scholar 

  • Buck S, Sidhu MK (2020) A guide to designing a memory fMRI paradigm for pre-surgical evaluation in temporal lobe epilepsy. Front Neurol 10:1354. https://doi.org/10.3389/fneur.2019.01354. eCollection 2019

    Article  PubMed  PubMed Central  Google Scholar 

  • Caras A et al (2020) Usefulness and impact of intraoperative imaging for glioma resection on patient outcome and extent of resection: a systematic review and meta-analysis. World Neurosurg 134:98–110

    Article  PubMed  Google Scholar 

  • Carl B, Bopp M, Saß B et al (2020) Spine surgery supported by augmented reality. Glob Spine J 10:415–455

    Google Scholar 

  • Cartucho J, Shapira D, Ashrafian H et al (2020) Multimodal mixed reality visualisation for intraoperative surgical guidance. Int J Comput Assist Radiol Surg 15:819–826

    Article  PubMed  PubMed Central  Google Scholar 

  • Cedzich C, Taniguchi M, Schaefer S et al (1996) Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38:962–970

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty MM et al (2008) Towards a validation of atlas warping techniques. Med Image Anal 12(6):713–726

    Article  PubMed  Google Scholar 

  • Chen W, Ugurbil K (1999) High spatial resolution functional magnetic resonance imaging at very high magnetic field. Top Magn Reson Imaging 10:63–78

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Xu J, Nie B (2013) Abnormal resting-state activities and functional connectivities of the anterior and posterior cortexes in medication-naive patients with obsessive-compulsive disorders. PLoS One 8:e67478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Morshed RA, Auffinger B et al (2014) Multifunctional nanoparticle for brain tumor imaging and therapy. Adv Drug Deliv Res 66:42–57

    Article  CAS  Google Scholar 

  • Cirillo S, Caulo M, Pieri V, Falini A, Castellano A (2019) Role of functional imaging techniques to assess motor and language cortical plasticity in glioma patients: a systematic review. Neural Plast 2019:4056436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coenen VA, Krings T, Axer H et al (2003) Intraoperative three-dimensional visualization of the pyramidal tract in a neuronavigation system (PTV) reliably predicts true position of principal pathways. Surg Neurol 60:381–390

    Article  PubMed  Google Scholar 

  • Coenen VA, Mädler B, Schiffbauer H et al (2011) Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery 68:1069–1075

    Article  PubMed  Google Scholar 

  • Coenen V, Kieselbach K, Mader I et al (2015) Diffusion tensor magnetic resonance imaging (DTI) tractography-guided deep brain stimulation in neuropathic pain. Acta Neurochir 157:739–741

    Article  PubMed  Google Scholar 

  • Cosgrove GR, Buchbinder BR, Jiang H (1996) Functional magnetic resonance imaging for intracranial neuronavigation. Neurosurg Clin N Am 7:313–322

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias G et al (2020) PTPmu-targeted nanoparticles label invasive pediatric and adult glioblastoma. Nanomedicine 28:102216

    Article  CAS  PubMed  Google Scholar 

  • D’Andrea G et al (2017) Functional magnetic resonance imaging (fMRI), pre-intraoperative tractography in neurosurgery: the experience of Sant’ Andrea Rome University Hospital. Acta Neurochir Suppl 124:241–250

    Article  PubMed  Google Scholar 

  • Dallapiazza RF et al (2019) Outcomes from stereotactic surgery for essential tremor. J Neurol Neurosurg Psychiatry 90(4):474–482

    Article  PubMed  Google Scholar 

  • Delgado-López PD, Riñones-Mena E, Corrales-García EM (2018) Treatment-related changes in glioblastoma: a review on the controversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosis. Clin Transl Oncol 20:939–953

    Article  PubMed  Google Scholar 

  • DeRidder D, De Mulder G, Walsh V et al (2004) Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. Case report. J Neurosurg 100:560–564

    Article  Google Scholar 

  • Duffau H, Capelle L, Sichez N et al (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125:199–214

    Article  PubMed  Google Scholar 

  • Duffau H, Capelle L, Denvil D et al (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a series of 103 patients. J Neurosurg 98:764–768

    Article  PubMed  Google Scholar 

  • Elhawary H, Liu H, Patel P et al (2011) Intraoperative real-time querying of white matter tracts during frameless stereotactic neuronavigation. Neurosurgery 68:506–516

    Article  PubMed  Google Scholar 

  • Eljamel MS, Mahboob SO (2016) The effectiveness and cost-effectiveness of intraoperative imaging in high-grade glioma resection; a comparative review of intraoperative ALA, fluorescein, ultrasound and MRI. Photodiagn Photodyn Ther 16:35–43

    Article  Google Scholar 

  • Fandino J, Kollias S, Wieser HG et al (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the motor cortex. J Neurosurg 91:238–250

    Article  CAS  PubMed  Google Scholar 

  • Faust K, Vajcoczy P (2016) Distinct displacements of the optic radiation based on tumor location revealed using preoperative diffusion tensor imaging. J Neurosurg 124:1343–1352

    Article  PubMed  Google Scholar 

  • Fitzgerald DB, Cosgrove GR, Ronner S et al (1997) Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol 18:1529–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flor H (2003) Remapping somatosensory cortex after injury. Adv Neurol 93:195–204

    PubMed  Google Scholar 

  • Fox PT, Raichle ME (1984) Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol 51:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Fox PT, Mintum MA, Raichle ME et al (1986) Mapping human visual cortex with positron emission tomography. Nature 323:806–809

    Article  CAS  PubMed  Google Scholar 

  • Fox PT, Miezin FM, Allman JM et al (1987) Retinotopic organization of human visual cortex mapped with positron-emission tomography. J Neurosci 7:913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey D, Strack V, Wiener E et al (2012) A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotrophy values. NeuroImage 62:1600–1609

    Article  CAS  PubMed  Google Scholar 

  • Fried I, Nenov V, Ojemann SG et al (1995) Functional MR and PET imaging of rolandic and visual cortices for neurosurgical planning. J Neurosurg 83:854–861

    Article  CAS  PubMed  Google Scholar 

  • Fujii Y, Nakada T (2003) Cortical reorganization in patient with subcortical hemiparesis: neural mechanisms of functional recovery and prognostic implication. J Neurosurg 98:64–73

    Article  PubMed  Google Scholar 

  • Gallen CC, Bucholz RD, Sobel DF (1994) Intracranial neurosurgery guided by functional imaging. Surg Neurol 42:523–530

    Article  CAS  PubMed  Google Scholar 

  • Gerard IJ, MartaKersten-Oertel M, Petrecca K et al (2017) Brain shift in neuronavigation of brain tumors: a review. Med Image Anal 35:403–420

    Article  PubMed  Google Scholar 

  • Gering DT, Weber DM (1998) Intraoperative, real-time, functional MRI. J Magn Reson Imaging 8:254–257

    Article  CAS  PubMed  Google Scholar 

  • Giove F, Gareffa G, Giuletti G et al (2004) Issues about the fMRI of the human spinal cord. Magn Reson Imaging 22:1505–1516

    Article  PubMed  Google Scholar 

  • Glaudemans AWJM, Enting RH, Heesters MAAM et al (2013) Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 40:615–635

    Google Scholar 

  • Golby A (2015) Image-guided neurosurgery, 1st edn. Academic Press, Elsevier, London

    Google Scholar 

  • Golfinos JG, Fitzpatrick BC, Smith LR, Spetzler RF (1995) Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 83(2):197–205

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Saitoh Y, Hashimoto N, Hirata M, Kishima H, Oshino S, Tani N, Hosomi K, Kakigi R, Yoshimine T. Diffusion tensor fiber tracking in patients with central post-stroke pain; correlation with efficacy of repetitive transcranial magnetic stimulation. Pain. 2008;140:509–518

    Google Scholar 

  • Gras-Combe G, Moritz-Gasser S, Herbet G et al (2012) Intraoperative subcortical electrical mapping of optic radiation in awake surgery for gliomas in visual pathways. J Neurosurg 117:466–473

    Article  PubMed  Google Scholar 

  • Gumprecht HK, Widenka DC, Lumenta CB (1999) BrainLab VectorVision Neuronavigation System: technology and clinical experiences in 131 cases. Neurosurgery 44(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Gutman DA, Holtzheimer PE, Behrens TE (2009) A tractography analysis of deep brain stimulation white matter targets for depression. Biol Psychiatry 65:276–282

    Article  PubMed  Google Scholar 

  • Hale MD (2018) A novel functional magnetic resonance imaging paradigm for the preoperative assessment of auditory perception in a musician undergoing temporal lobe surgery. World Neurosurg 111:63–67

    Article  PubMed  Google Scholar 

  • Hassfeld S, Muehling J, Wirtz CR, Knauth M, Lutze T, Schulz HJ (1997) Intraoperative guidance in maxillofacial and craniofacial surgery. Proc Inst Mech Eng H 211(4):277–283

    Article  CAS  PubMed  Google Scholar 

  • Helm PA, Eckel TS (1998) Accuracy of registration methods in frameless stereotaxis. Comput Aided Surg 3(2):51–56

    Article  CAS  PubMed  Google Scholar 

  • Hemm S, Vaissiere N, Zanca M et al (2004) Thallium SPECT-based stereotactic targeting brain tumor biopsies. A technical note. Stereotact Funct Neurosurg 82:70–76

    Article  CAS  PubMed  Google Scholar 

  • Henke K, Treyer V, Weber B et al (2003) Functional neuroimaging studies predicts individual memory outcome after amygdalohippocampectomy. Neuroreport 14:1197–1202

    Article  PubMed  Google Scholar 

  • Hirsch J, Ruge MI, Kim KHS et al (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language and visual functions. Neurosurgery 47:711–722

    CAS  PubMed  Google Scholar 

  • Horwitz B, Hwang C, Alstott J (2013) Interpreting the effects of altered brain anatomical connectivity on fMRI functional connectivity: a role for computational neural modeling. Front Human Neurosci 7:649

    Article  Google Scholar 

  • Hunsche S, Sauner D, Runge MJR et al (2013) Tractography-guided stimulation of somatosensory fibers for thalamic pain relief. Stereotact Funct Neurosurg 91:328–334

    Article  PubMed  Google Scholar 

  • James JS, Radhakrishnan A, Thomas B, Madhusoodanan M, Kesavadas C, Abraham M, Menon R, Rathore C, Vilanilam G (2015) Diffusion tensor imaging tractography of Meyer’s loop in planning resective surgery for drug-resistant temporal lobe epilepsy. Epilepsy Res 110:95–104

    Article  PubMed  Google Scholar 

  • Jannin P, Morandi X, Fleig OJ et al (2002) Integration of sulcal and functional information for multimodal neuronavigation. J Neurosurg 96:713–723

    Article  PubMed  Google Scholar 

  • Jeurissen B et al (2019) Diffusion MRI fiber tractography of the brain. NMR Biomed 32(4):e3785

    Article  PubMed  Google Scholar 

  • Jiao Y et al (2020) Plasticity in language cortex and white matter tracts after resection of dominant inferior parietal lobule arteriovenous malformations: a combined fMRI and DTI study. J Neurosurg 20:1–8. https://doi.org/10.3171/2019.12.JNS191987. Online ahead of print

    Article  Google Scholar 

  • Jones DK (2010) Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med 2(3):341–355

    Article  Google Scholar 

  • Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254

    Article  PubMed  Google Scholar 

  • Jung WH, Kang DH, Kim E et al (2013) Abnormal corticostriatal-limbic functional connectivity in obsessive compulsive disorder during reward processing and resting-state. Neuroimage Clin 3:27–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamada K, Houkin K, Takeuchi F et al (2003) Visualization of the eloquent motor system by integration of MEG, functional, and anisotropic diffusion-weighted MRI in functional neuronavigation. Surg Neurol 59:353–362

    Article  Google Scholar 

  • Karl A, Mühlnickel W, Kurth R et al (2004) Neuroelectric source imaging of steady-state movement-related cortical potentials in human upper extremity amputees with and without phantom limb pain. Pain 110:90–102

    Article  PubMed  Google Scholar 

  • Keles GE, Berger MS (2004) Advances in neurosurgical technique in the current management of brain tumors. Semin Oncol 31:659–665

    Article  PubMed  Google Scholar 

  • Kikinis R, Gleason PL, Moriarty TM et al (1996) Computer-assisted interactive three-dimensional planning for neurosurgical procedures. Neurosurgery 38:640–651

    Article  CAS  PubMed  Google Scholar 

  • Kober H, Nimsky C, Moeller M et al (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. NeuroImage 14:1214–1228

    Article  CAS  PubMed  Google Scholar 

  • Koivukangas J, Louhisalmi Y, Alakuijala J et al (1993) Ultrasound-controlled neuronavigator-guided brain surgery. J Neurosurg 79:36–42

    Article  CAS  PubMed  Google Scholar 

  • Kracht LW, Miletic H, Busch S et al (2004) Delineation of brain tumor extent with (11C)L methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10:7163–7170

    Article  CAS  PubMed  Google Scholar 

  • Krieg S, Shiban E, Buchmann N et al (2012) Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg 116:994–1001

    Article  PubMed  Google Scholar 

  • Krieg SM, Shiban E, Buchmann N et al (2013) Presurgical navigated transcranial magnetic brain stimulation for recurrent gliomas in motor eloquent areas. Clin Neurophysiol 124:522–527

    Article  PubMed  Google Scholar 

  • Krings T, Reinges MH, Thiex R et al (2001) Function and diffusion-weighted magnetic resonance images of space-occupying lesions affecting the motor system: imaging the motor cortex and pyramidal tracts. J Neurosurg 95:816–824

    Article  CAS  PubMed  Google Scholar 

  • Krishnan R, Raabe A, Hattingen E et al (2004) Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 55:904–915

    Article  PubMed  Google Scholar 

  • Kuhnt D et al (2011) Quantification of glioma removal by intraoperative high-field magnetic resonance imaging: an update. Neurosurgery 69:852–862

    Article  PubMed  Google Scholar 

  • Kuwako T, Mizumura S, Murakami R et al (2013) Voxel-based analysis of (2013) Tl SPECT for grading and diagnostic accuracy of gliomas: comparison with ROI analysis. Ann Nucl Med 27:493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laborde G, Gilsbach J, Harders A, Klimek L, Moesges R, Krybus W (1992) Computer assisted localizer for planning of surgery and intra-operative orientation. Acta Neurochir 119(1–4):166–170

    Article  CAS  PubMed  Google Scholar 

  • Langguth B, Eichhammer P, Wiegand R et al (2003) Neuro-navigated rTMS in a patient with chronic tinnitus. Effects of 4 weeks treatment. Neuroreport 23:977–980

    Article  Google Scholar 

  • Lauter JL, Herscowitch P, Formby C et al (1985) Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res 20:199–205

    Article  CAS  PubMed  Google Scholar 

  • Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480

    Article  PubMed  Google Scholar 

  • Leherici S, Duffeau H, Cornu P et al (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92:589–598

    Article  Google Scholar 

  • Li W, Wait SD, Oqq RJ et al (2013) Functional magnetic resonance imaging of the visual cortex performed in children under sedation to assist in presurgical planning. J Neurosurg Pediatr 11:543–546

    Article  PubMed  Google Scholar 

  • Lotze M, Grodd W, Birbaumer N et al (1999) Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain. Nat Neurosci 2:501–502

    Article  CAS  PubMed  Google Scholar 

  • Lu JF et al (2013) “Awake” intraoperative functional MRI (ai-fMRI) for mapping the eloquent cortex: is it possible in awake craniotomy? Neuroimage Clin 2:132–147H

    Article  Google Scholar 

  • Lv Z, Wang E, Tong LM, Williams G, Zaharchuk M, Zeineh AN, Goldstein-Piekarski TM, Ball CL, Wintermark M (2018) Resting-state functional MRI: everything that nonexperts have always wanted to know. Am J Neuroradiol 39(8):1390–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maesawa S, Fuji M, Nakahara N et al (2010) Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract. World Neurosurg 74:153–161

    Article  PubMed  Google Scholar 

  • Mahlke C, Wallhauser-Franke E (2004) Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c–fos immunocytochemistry. Hear Res 195:17–34

    Article  CAS  PubMed  Google Scholar 

  • Maia AC, Malheiros SM, da Rocha AJ et al (2004) Stereotactic biopsy guidance in adults with supratentorial nonenhancing gliomas: role of perfusion-weighted magnetic resonanced imaging. J Neurosurg 101:970–976

    Article  PubMed  Google Scholar 

  • Maillard L, Ishii K, Bushara K et al (2000) Mapping the basal ganglia. FMRI evidence for somatotopic representation of face, hand and foot. Neurology 55:377–383

    Article  CAS  PubMed  Google Scholar 

  • Makela JP, Kirveskari E, Seppa M et al (2001) Three-dimensional integration of brain anatomy and functions to facilitate intraoperative navigation around the sensorimotor strip. Hum Brain Mapp 12:180–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandonnet E, Mellerio C, Barberis M et al (2020) When right is on the left (and vice versa): a case series of glioma patients with reversed lateralization of cognitive functions. J Neurol Surg A Cent Eur Neurosurg 81:138–146

    Article  PubMed  Google Scholar 

  • Mannfolk P et al (2011) Can resting-state functional MRI serve as a complement to task-based mapping of sensorimotor function? A test-retest reliability study in healthy volunteers. J Magn Reson Imaging 34:511–517

    Article  PubMed  Google Scholar 

  • Mascott CR (2005) Comparison of magnetic tracking and optical tracking by simultaneous use of two independent frameless stereotactic systems. Neurosurgery 57(ONS Suppl 3):295–301

    PubMed  Google Scholar 

  • Massot-Tarrús A (2019) Comparing the Wada test and functional MRI for the presurgical evaluation of memory in temporal lobe epilepsy. Curr Neurol Neurosci Rep 19(6):31. https://doi.org/10.1007/s11910-019-0945-8

    Article  PubMed  Google Scholar 

  • Medina LS, Aguirre E, Bernal B et al (2004) Functional MR imaging versus Wada test for evaluation of language lateralization: cost analysis. Radiology 230:49–54

    Article  PubMed  Google Scholar 

  • Meier MP, Ilmberger J, Fesl G et al (2013) Validation of functional motor and language MRI with direct cortical stimulation. Acta Neurochir 155:675–683

    Article  CAS  PubMed  Google Scholar 

  • Mikuni N, Okada T, Enatsu R et al (2007) Clinical impact of integrated functional neuronavigation and subcortical stimulation to preserve motor function during resection of brain tumors. J Neurosurg 106:593–598

    Article  PubMed  Google Scholar 

  • Miller K, Joldes GR, Bourantas G et al (2019) Biomechanical modeling and computer simulation of the brain during neurosurgery. Int J Numer Method Biomed Eng 35:e3250

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell TJ, Hacker CD, Breshears JD (2013) A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery 73:969–983

    Article  PubMed  Google Scholar 

  • Miyashita Y (2004) Cognitive memory: cellular and network machineries and their top-down control. Science 306:435–440

    Article  CAS  PubMed  Google Scholar 

  • Moche M, Busse H, Dannenberg C et al (2001) Fusion von MRT-, fMRT-und intraoperativen MRT-Daten. Radiologe 41:993–1000

    Article  CAS  PubMed  Google Scholar 

  • Moeller M, Freund M, Greiner C et al (2004) Real-time fMRI: a tool for the routine presurgical localisation of the motor cortex. Eur Radiol 15:292–295

    Article  Google Scholar 

  • Moffat BA, Reddy GR, McKonville P et al (2003) A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol Imaging 2:324–332

    Article  CAS  PubMed  Google Scholar 

  • Mongen MA, Willems PWA (2019) Current accuracy of surface matching compared to adhesive markers in patient-to-image registration. Acta Neurochir 191(5):865–870

    Article  Google Scholar 

  • Mühlnickel W, Elbert T, Taub E et al (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A 95:10340–10343

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakasato N, Yoshimoto T (2000) Somatosensory, auditory and visual evoked magnetic fields in patients with brain diseases. J Clin Neurophysiol 17:20–22

    Article  Google Scholar 

  • Neuner I, Kaffanke JB, Langen K-J et al (2012) Multimodal imaging utilising integrated MR-PET for human brain tumor assessment. Eur Radiol 22:2568–2580

    Article  PubMed  Google Scholar 

  • Nimsky C, Ganslandt O, Cerny S et al (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47:1070–1079

    Article  CAS  PubMed  Google Scholar 

  • Nimsky C, Ganslandt O, Kober H et al (2001) Intraoperative magnetic resonance imaging combined with neuronavigation: a new concept. Neurosurgery 48:1082–1091

    CAS  PubMed  Google Scholar 

  • Nimsky C, Ganslandt O, Fahlbusch R (2004) Functional neuronavigation and intraoperative MRI. Adv Tech Stand Neurosurg 29:229–263

    Article  CAS  PubMed  Google Scholar 

  • Okudera H, Takemae T, Kobayashi K (1993) Intraoperative computer tomographic scanning during transsphenoidal surgery. Neurosurgery 32:1041–1043

    Article  CAS  PubMed  Google Scholar 

  • Owen SL, Heath J, Kringelbach ML et al (2007) Preoperative DTI and probabilistic tractography in an amputee with deep brain stimulation for lower limb stump pain. Br J Neurosurg 21:485–490

    Article  CAS  PubMed  Google Scholar 

  • Paleologos TS, Wadley JP, Kitchen ND et al (2000) Clinical utility and cost-effectiveness of interactive image-guided craniotomy: clinical comparison between conventional and image-guided meningioma surgery. Neurosurgery 47:40–47

    CAS  PubMed  Google Scholar 

  • Partovi S, Jacobi B, Rapps N et al (2012) Clinical standardized fMRI reveals altered language lateralization in patients with brain tumor. AJNR Am J Neuroradiol 33:2151–2157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfisterer WK, Papadopoulos S, Drumm DA, Smith K, Preul MC (2008) Fiducial versus nonfiducial neuronavigation registration assessment and considerations of accuracy. Neurosurgery 62(3 suppl 1):201–207

    PubMed  Google Scholar 

  • Pirotte B, Goldman S, Massager N et al (2004) Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography guided stereotactic brain biopsies. J Neurosurg 101:476–483

    Article  CAS  PubMed  Google Scholar 

  • Pirotte B, Voordecker P, Neugroschl C et al (2005) Combination of functional magnetic resonance imaging-guided neuronavigation and intraoperative cortical brain mapping improves targeting of motor cortex stimulation in neuropathic pain. Neurosurgery 56(ONS Suppl):344–359

    PubMed  Google Scholar 

  • Powell HWR, Koepp MJ, Richardson MP et al (2004) The application of functional MRI of memory in temporal lobe epilepsy: a clinical review. Epilepsia 45:855–863

    Article  PubMed  Google Scholar 

  • Prabhu SS, Gasco J, Tummala S et al (2011) Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. J Neurosurg 114:719–726

    Article  PubMed  Google Scholar 

  • Puce A, Constable RT, Luby ML et al (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262–270

    Article  CAS  PubMed  Google Scholar 

  • Pujol S et al (2015) The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging 25(6):875–882

    Article  PubMed  PubMed Central  Google Scholar 

  • Quartuccio N, Laudicella R, Vento A et al (2020) The additional value of 18 F-FDG PET and MRI in patients with glioma: a review of the literature from 2015 to 2020. Diagnostics 10:357. https://doi.org/10.3390/diagnostics10060357

    Article  CAS  PubMed Central  Google Scholar 

  • Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seiffert V (2002) Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery 50(4):797–801

    Article  PubMed  Google Scholar 

  • Rabin ML, Narayan VM, Kimberg DY et al (2004) Functional MRI predicts post surgical memory following temporal lobectomy. Brain 127:2286–2298

    Article  PubMed  Google Scholar 

  • Raimbault A, Cazals X, Lauvin M-A et al (2014) Radionecrosis of malignant glioma and cerebral metastasis: a diagnostic challenge in MRI. Diagn Interv Imaging 95:985–1000

    Article  CAS  PubMed  Google Scholar 

  • Ranjan M et al (2019) Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy. J Neurosurg 27:1–8

    Google Scholar 

  • Rapp M, Foeth FW, Felberg J et al (2013) Clinical value of O-(2-[18F]-fluoroethyl)-L-tyrosine positron emission tomography in patients with low grade glioma. Neurosurg Focus 34(2):E13

    Article  Google Scholar 

  • Rasche D, Tronnier VM (2016) Clinical significance of invasive motor cortex stimulation for trigeminal facial neuropathic pain syndromes. Neurosurgery 79:655–666

    Article  PubMed  Google Scholar 

  • Rasmussen IA, Lindseth F, Rygh OM et al (2007) Functional neuronavigation combined with intraoperative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir 149:365–378

    Article  PubMed  Google Scholar 

  • Rehemtulla A, Hall DE, Stegman LD et al (2002) Molecular imaging of gene expression and efficacy following adenoviral-mediated brain tumour gene therapy. Mol Imaging 1:43–55

    Article  CAS  PubMed  Google Scholar 

  • Risholm P, Golby AJ, Wells W III et al (2011) Multimodal image registration for preoperative planning and image-guided neurosurgical procedures. Neurosurg Clin N Am 22:197–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts DW, Miga MI, Hartov A et al (1999) Intraoperatively updated neuroimaging using brain modeling sparse data. Neurosurgery 45:1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Roessler K, Donat M, R Lanzenberger R et al (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76:1152–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romstöck J, Fahlbusch R, Ganslandt O et al (2002) Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 72:221–229

    Article  PubMed  PubMed Central  Google Scholar 

  • Ropele S, Fazekas F (2019) Quantification of cortical damage in multiple sclerosis using DTI remains a challenge. Brain 142:1848–1850

    Article  PubMed  Google Scholar 

  • Rosenstock T, Picht T, Schneider H et al (2020) Pediatric navigated transcranial magnetic stimulation motor and language mapping combined with diffusion tensor imaging tractography: clinical experience. J Neurosurg Pediatr 24:1–11. https://doi.org/10.3171/2020.4.PEDS20174. Online ahead of print

    Article  Google Scholar 

  • Roux FE, Ibarrola D, Lotterie JA et al (2001a) Perimetric visual field and functional MRI correlation: implications for image-guided surgery in occipital brain tumors. J Neurol Neurosurg Psychiatry 71:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux FE, Ibarrola D, Tremoulet M et al (2001b) Methodological and technical issues for integrating functional magnetic resonance imaging data in a neuronavigational system. Neurosurgery 49:1145–1157

    CAS  PubMed  Google Scholar 

  • Rozanski VE, Vollmar C, Cunha JP et al (2014) Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor tractography study. NeuroImage 84:435–442

    Article  PubMed  Google Scholar 

  • Rutten GJ, Ramsey NF, van Rijen PC et al (2002) FMRI-determined language lateralization in patients with unilateral or mixed language dominance according to the Wada test. NeuroImage 17:447–460

    Article  CAS  PubMed  Google Scholar 

  • Ryan MJ, Erickson RK, Levin DN, Pelizzari CA, Macdonald RL, Dohrmann GJ (1996) Frameless stereotaxy with real-time tracking of patient head movement and retrospective patient-image registration. J Neurosurg 85(2):287–292

    Article  CAS  PubMed  Google Scholar 

  • Šamec N et al (2020) Nanomedicine and immunotherapy: a step further towards precision medicine for glioblastoma. Molecules 25(3):490

    Article  PubMed Central  Google Scholar 

  • Sanvito F, Caverzasi E, Riva M, Jordan KM, Blasi V, Scifo P, Iadanza A, Crespi SA, Cirillo S, Casarotti A, Leonetti A, Puglisi G, Grimaldi M, Bello L, Gorno-Tempini ML, Henry RG, Falini A, Castellano A (2020) fMRI-targeted high-angular resolution diffusion MR tractography to identify functional language tracts in healthy controls and glioma patients. Front Neurosci 14:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiffbauer H, Berger MS, Ferrari P et al (2003) Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. Neurosurg Focus 15:E7

    Article  PubMed  Google Scholar 

  • Schulder M, Holodny A, Liu WC et al (1999) Functional magnetic resonance image-guided surgery of tumors in or near the primary visual cortex. Stereotact Funct Neurosurg 73:31–36

    Article  CAS  PubMed  Google Scholar 

  • Seidel K et al (2012) Low-threshold monopolar motor mapping for resection of primary motor cortex tumors. Neurosurgery 71(1 Suppl Operative):104–114. discussion 114–115

    PubMed  Google Scholar 

  • Seidel K et al (2020) Continuous dynamic mapping to identify the corticospinal tract in motor eloquent brain tumors: an update. J Neurol Surg A Cent Eur Neurosurg 81:105–110

    Article  PubMed  Google Scholar 

  • Shabani S, Kaushal M, Budde MD, Wang MC, Kurpad SN (2020) Diffusion tensor imaging in cervical spondylotic myelopathy: a review. J Neurosurg Spine 28:1–8

    Google Scholar 

  • Signorelli F, Guyotat J, Schneider F et al (2003) Technical refinements for validating functional MRI-based neuronavigation data by electrical stimulation during cortical language mapping. Minim Invasive Neurosurg 46:265–268

    Article  CAS  PubMed  Google Scholar 

  • Sipos EP, Tebo SA, Zinreich SJ, Long DM, Brem H (1996) In vivo accuracy testing and clinical experience with the ISG Viewing Wand. Neurosurgery 39(1):194–202

    Article  CAS  PubMed  Google Scholar 

  • Sol JC, Casaux J, Roux FE et al (2001) Chronic motor cortex stimulation for phantom limb pain: correlations between pain relief and functional imaging. Stereotact Funct Neurosurg 77:172–176

    Article  CAS  PubMed  Google Scholar 

  • Sollmann N, Zhang H, Fratini A et al (2020) Risk assessment by presurgical tractography using navigated TMS maps in patients with highly motor- or language-eloquent brain tumors. Cancers 12(5):1264. https://doi.org/10.3390/cancers12051264

    Article  PubMed Central  Google Scholar 

  • Son BC, Kim MC, Choi BG et al (2001) Proton magnetic resonance chemical shift imaging (1H CSI)-directed stereotactic biopsy. Acta Neurochir 143:45–49

    Article  CAS  PubMed  Google Scholar 

  • Stadlbauer A, Moser E, Gruber S et al (2004) Integration of biochemical images of a tumor into frameless stereotaxy achieved using a magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set. J Neurosurg 101:287–294

    Article  PubMed  Google Scholar 

  • Stippich C, Hofmann R, Kapfer D et al (1999) Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional MRI. Neurosci Lett 277:25–28

    Article  CAS  PubMed  Google Scholar 

  • Stippich C, Kapfer D, Hempel E et al (2000) Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand. Neurosci Lett 285:155–159

    Article  CAS  PubMed  Google Scholar 

  • Stippich C, Kress B, Ochmann H et al (2003) Preoperative functional magnetic resonance imaging (fMRI) in patients with rolandic brain tumors: indication, investigation strategy, possibilities and limitations of clinical application. Fortschr Roentgenstr 175:1042–1050

    CAS  Google Scholar 

  • Stippich C, Rapps N, Dreyhaupt J et al (2007) Localizing and lateralizing language in patients with brain tumors: feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology 243:828–836

    Article  PubMed  Google Scholar 

  • Stoeckel MC, Binkofski F (2010) The role of ipsilateral primary motor cortex in movement control and recovery from brain damage. Exp Neurol 221:13–17

    Article  CAS  PubMed  Google Scholar 

  • Stroman PW, Kornelsen J, Lawrence J (2005) An improved method for spinal functional MRI with large volume coverage of the spinal cord. J Magn Reson Imaging 21:520–526

    Article  PubMed  Google Scholar 

  • Su JH et al (2019) Thalamus Optimized Multi Atlas Segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI. NeuroImage 194:272–282

    Article  PubMed  Google Scholar 

  • Taoka T, Sakamoto M, Nagakawa H et al (2008) Diffusion tensor tractography of the Meyer loop in cases of temporal lobe resection for temporal lobe epilepsy. Correlation between postoperative visual field defect and anterior limit of Meyer loop on tractography. AJNR Am J Neuroradiol 29:1329–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas C, Ye FQ, Irfanoglu MO et al (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A 111(46):16574–16579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thulborn KR (1999) Clinical rationale for very-high-field (3.0 Tesla). Functional magnetic resonance imaging. Top Magn Reson Imaging 10:37–50

    Article  CAS  PubMed  Google Scholar 

  • Tie Y, Rigolo L, Norton IH et al (2014) Defining language networks from resting-state fMRI for surgical planning – a feasibility study. Hum Brain Mapp 35(3):1018–1030

    Article  PubMed  Google Scholar 

  • Tohyama S, Walker MR, Sammartino F et al (2020) The utility of diffusion tensor imaging in neuromodulation: moving beyond conventional Magnetic Resonance Imaging. Neuromodulation 23:427–435

    Article  PubMed  Google Scholar 

  • Tozakidou M, Wenz H, Reinhardt J et al (2013) Primary motor cortex activation and lateralization in patients with tumors of the central region. Neuroimage Clin 2:221–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Tronnier VM, Wirtz CR, Knauth M et al (1996) Intraoperative computer-assisted neuronavigation in functional neurosurgery. Stereotact Funct Neurosurg 66:65–68

    Article  CAS  PubMed  Google Scholar 

  • Tronnier VM, Wirtz CR, Knauth M et al (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40:891–902

    Article  CAS  PubMed  Google Scholar 

  • Tronnier V, Staubert A, Bonsanto MM et al (2000) Virtuelle Realität in der Neurochirurgie. Radiologe 40:211–217

    Article  CAS  PubMed  Google Scholar 

  • Tyndall AJ et al (2017) Presurgical motor, somatosensory and language fMRI: technical feasibility and limitations in 491 patients over 13 years. Eur J Radiol 27:267–278

    Article  Google Scholar 

  • Unsgaard G, Gronningsaeter A, Ommedahl S et al (2002) Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery 51:402–412

    Article  PubMed  Google Scholar 

  • Vabulas M, Kumar VA, Hamilton JD et al (2014) Real-time atlas-based stereotactic neuronavigation. Neurosurgery 74(1):128–134

    Article  PubMed  Google Scholar 

  • Varma NR, Barton KN, Janic B, Shankar A, Iskander A, Ali MM, Arbab AS (2013) Monitoring adenoviral based gene delivery in rat glioma by molecular imaging. World J Clin Oncol 4(4):91–101

    Article  PubMed  PubMed Central  Google Scholar 

  • Villalobos H, Germano IM (1999) Clinical evaluation of multimodality registration in frameless stereotaxy. Comput Aided Surg 4(1):45–49

    Article  CAS  PubMed  Google Scholar 

  • Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K (1987) Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotactic surgery. Surg Neurol 27:543–547

    Article  CAS  PubMed  Google Scholar 

  • Wegscheid ML, Morshed RA, Cheng Y et al (2014) The art of attraction: application of multifunctional magnetic nanomaterials for malignant glioma. Expert Opin Drug Deliv 11:957–975

    Article  CAS  PubMed  Google Scholar 

  • Wengenroth M, Blatow M, Guenther J et al (2011) Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex. Eur Radiol 21:1517–1525

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkler D, Strauss G, Lindner D et al (2005) The importance of functional magnetic resonance imaging in neurosurgical treatment of tumors in the central region. Clin Neuroradiol 15:182–189

    Article  Google Scholar 

  • Winston GP, Yogarajah M, Symms MR (2011) Diffusion tensor imaging tractography to visualize the relationship of the optic radiation to epileptogenic lesion prior to neurosurgery. Epilepsia 52:1430–1438

    Article  PubMed  PubMed Central  Google Scholar 

  • Wirtz CR, Knauth M, Hassfeld S et al (1998) Neuronavigation – first experience with three commercially available systems. Zentralbl Neurochir 59:14–22

    CAS  PubMed  Google Scholar 

  • Wirtz CR, Albert FK, Schwaderer M et al (2000) The benefit of neuronavigation for neurosurgery analyzed by its input on glioblastoma surgery. Neurol Res 22:354–360

    Article  CAS  PubMed  Google Scholar 

  • Woerdeman PA, Willems PWA, Noordmans HJ, Tulleken CAF, Berkelbach van der Sprenkel JW (2007) Application accuracy in frameless image-guided neurosurgery: a comparison study of three patient-to-image registration methods. J Neurosurg 106(6):1012–1016

    Article  PubMed  Google Scholar 

  • Woermann FG, Jokeit H, Luerding R et al (2003) Language lateralization by Wada test and fMR in 100 patients with epilepsy. Neurology 61:699–701

    Article  CAS  PubMed  Google Scholar 

  • Wolfsberger S, Rössler K, Regatschnig R, Ungersböck K (2002) Anatomical landmarks for image registration in frameless stereotactic neuronavigation. Neurosurg Rev 25(1–2):68–72

    Article  PubMed  Google Scholar 

  • Woolsey CN, Erickson TC, Gilson WE (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked responses and electrical stimulation. J Neurosurg 51:476–506

    Article  CAS  PubMed  Google Scholar 

  • Wu CWH, Kaass JH (1999) Reorganization in primary motor cortex of primates with long-standing therapeutic amputations. J Neurosci 19:7679–7697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JS, Zhou LF, Tang WJ et al (2007) Clinical evaluation and follow-up outcome of diffusion tensor imaging-based neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61:935–948

    Article  PubMed  Google Scholar 

  • You SH, Jang SH, Kim YH et al (2005) Virtual-reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blinded study. Stroke 36:1166–1171

    Article  PubMed  Google Scholar 

  • Yousry TA, Schmid U, Jassoy AG et al (1995) Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 195:23–29

    Article  CAS  PubMed  Google Scholar 

  • Zacà D, Nickerson JP, Deib G et al (2012) Effectiveness of four different clinical fMRI paradigms for preoperative regional determination of language lateralization in patients with brain tumors. Neuroradiology 54:1015–1025

    Article  PubMed  Google Scholar 

  • Zaehle T, Rach S, Herrmann CS (2010) Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 5:e13766

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Vakhtin AA, Jennings JS, Massaband P, Wintermark M, Craig PL, Ashford JW, Clark JD, Fürst AJ (2020) Diffusion tensor tractography of brainstem fibers and its application in pain. PLoS One 15(2):e0213952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu FP, Wu JS, Song YY et al (2012) Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study. Neurosurgery 71:1170–1184

    Article  PubMed  Google Scholar 

  • Zinreich SJ, Tebo SA, Long DM, Brem H, Mattox DE, Loury ME, van der Kolk CA, Koch WM, Kennedy DW, Bryan RN (1993) Frameless stereotaxic integration of CT imaging data: accuracy and initial applications. Radiology 188(3):735–742

    Article  CAS  PubMed  Google Scholar 

  • Zolal A, Hejcl A, Vachata P et al (2012) The use of diffusion tensor images of the corticospinal tract in intrinsic brain tumor surgery: a comparison with direct subcortical stimulation. Neurosurgery 71:331–340

    Article  PubMed  Google Scholar 

  • Zurowski B, Kordon A, Weber-Fahr W (2012) Relevance of orbito-frontal neurochemistry for the outcome of cognitive-behavioural therapy in patients with obsessive compulsive disorder. Eur Arch Psychiatry Clin Neurosci 262:617–624

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker M. Tronnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tronnier, V.M., Stieglitz, L.H. (2022). Functional Neuronavigation. In: Stippich, C. (eds) Clinical Functional MRI. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-030-83343-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83343-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83342-8

  • Online ISBN: 978-3-030-83343-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics