Skip to main content

Advertisement

Log in

Effect of the Kv1.3 voltage-gated potassium channel blocker PAP-1 on the initiation and progress of atherosclerosis in a rat model

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Acute coronary syndrome is a serious medical emergency. It occurs when an atherosclerotic plaque ruptures, leading to thrombus formation within a coronary artery. Previous studies have shown that T cells are involved in the initiation and progression of acute coronary syndrome. CD4+CD28null T lymphocytes increase in atherosclerotic plaque, and voltage-gated potassium channel Kv1.3 blockers can suppress the function of these cells in vitro by preventing exocytosis of their cytoplasmic granules. The purpose of this study was to investigate the effect of PAP-1, a small molecule voltage-gated potassium channel Kv1.3 blocker, on the development of atherosclerosis (AS) in a rat model and the potential mechanism for this effect. Plasma lipids, interferonγ, CRP, CD4+CD28null T cells, and perforin were increased and unstable atherosclerotic plaques developed in the rat model of AS. Blockade of the Kv1.3 potassium channel via PAP-1 administration decreased perforin levels and prevented plaque formation but had no effect on the other changes seen in this AS model. These findings suggest that the small molecule, voltage-gated potassium channel Kv1.3 blocker PAP-1 can suppress the development of AS in a rat model, most likely by inhibiting the exocytosis of cytoplasmic granules from CD4+CD28null T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  CAS  PubMed  Google Scholar 

  2. Wen J, Wen Y, Zhiliang L, Lingling C, Longxing C, Ming W, Qiang F (2013) A decrease in the percentage of circulating mDC precursors in patients with coronary heart disease: a relation to the severity and extent of coronary artery lesions? Heart Vessel 28:135–142

    Article  Google Scholar 

  3. Tani S, Matsumoto M, Anazawa T, Kawamata H, Furuya S, Takahashi H, Iida K, Washio T, Kumabe N, Kobori M, Nagao K, Hirayama A (2012) Development of a model for prediction of coronary atherosclerotic regression: evaluation of high-density lipoprotein cholesterol level and peripheral blood monocyte count. Heart Vessel 27:143–150

    Article  Google Scholar 

  4. Dumitriu IE, Baruah P, Finlayson CJ, Loftus IM, Antunes RF, Lim P, Bunce N, Kaski JC (2012) High levels of costimulatory receptors OX40 and 4-1BB characterize CD4+CD28null T cells in patients with acute coronary syndrome. Circ Res 110:857–869

    Article  CAS  PubMed  Google Scholar 

  5. Dumitriu IE, Araguas ET, Baboonian C, Kaski JC (2009) CD4+CD28null T cells in coronary artery disease: when helpers become killers. Cardiovasc Res 81:11–19

    Article  CAS  PubMed  Google Scholar 

  6. Téo FH, de Oliveira RT, Mamoni RL, Ferreira MC, Nadruz W Jr, Coelho OR, Fernandes Jde L, Blotta MH (2013) Characterization of CD4+CD28null T cells in patients with coronary artery disease and individuals with risk factors for atherosclerosis. Cell Immunol 281:11–19

    Google Scholar 

  7. Damjanovich S, Gaspar R, Panyi G (2004) An alternative to conventional immunosuppression: small molecule inhibitors of kv1.3 channels. Mol Interv 4(5):250–254

    Google Scholar 

  8. Beeton C, Chandy KG (2005) Potassium channels, memory T cells, and multiple sclerosis. Neuroscientist 11(6):550–562

    Article  CAS  PubMed  Google Scholar 

  9. Xu R, Cao M, Wu X, Wang K, Ruan L, Quan X, Lu C, He W, Zhang C (2012) Kv1.3 channels as a potential target for immunomodulation of CD4+CD28null cells in patients with acute coronary syndrome. Clin Immunol 142:209–217

    Article  CAS  PubMed  Google Scholar 

  10. Schmitz A, Sankaranarayanan A, Azam P, Schmidt-Lassen K, Homerick D, Hänsel W, Wulff H (2005) Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol 68:1254–1270

    Article  CAS  PubMed  Google Scholar 

  11. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, Lee Healey CJ, Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG (2006) Kv1.3 channels are a therapeutic target for T-cell mediated autoimmune diseases. Proc Natl Acad Sci USA 103:17414–17419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Azam P, Sankaranarayanan A, Homerick D, Griffey S, Wulff H (2007) Targeting effector memory T cells with the small molecule Kv1.3 blocker PAP-1 suppresses allergic contact dermatitis. J Invest Dermatol 127:1419–1429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fonseca FA, Paiva TB, Silva EG, Ihara SS, Kasinski N, Martinez TL, Filho EE (1998) Dietary magnesium improves endothelial dependent relaxation of balloon injured arteries in rats. Atherosclerosis 139(2):237–242

    Article  CAS  PubMed  Google Scholar 

  14. Cao RY, St Amand T, Grabner R, Habenicht AJ, Funk CD (2009) Genetic and pharmacological inhibition of the 5-lipoxygenase/leukotriene pathway in atherosclerotic lesion development in ApoE deficient mice. Atherosclerosis 203(2):395–400

    Google Scholar 

  15. Tsukamoto K, Tangirala R, Chun SH, Puré E, Rader DJ (1999) Rapid regression of atherosclerosis induced by liver-directed gene transfer of ApoE in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19(9):2162–2170

    Article  CAS  PubMed  Google Scholar 

  16. Su Z, Li Y, James JC, McDuffie M, Matsumoto AH, Helm GA, Weber JL, Lusis AJ, Shi W (2006) Quantitative trait locus analysis of atherosclerosis in an intercross between c57bl/6 and c3h mice carrying the mutant apolipoprotein e gene. Genetics 172(3):1799–1807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hansson CK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519

    Article  CAS  PubMed  Google Scholar 

  18. Paulsson G, Zhou X, Tornquist E, Hansson GK (2000) Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 20(1):10–17

    Article  CAS  PubMed  Google Scholar 

  19. Ishida Y, Chused TM (1993) Lack of voltage sensitive potassium channels and generation of membrane potential by sodium potassium ATPase in murine T lymphocytes. J Immunol 151(2):610–620

    CAS  PubMed  Google Scholar 

  20. Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A, Shah K, Mulvany K, Hora D Jr, Cunningham P, Wunderler DL, McManus OB, Slaughter R, Bugianesi R, Felix J, Garcia M, Williamson J, Kaczorowski G, Sigal NH, Springer MS, Feeney W (1997) Blockade of the voltage-gated potassium channel kv1.3 inhibits immune responses in vivo. J Immunol 158(11):5120–5128

    Google Scholar 

  21. Yang PY, Rui YC, Lu L, Li TJ, Liu SQ, Yan HX, Wang HY (2005) Time courses of vascular endothelial growth factor and intercellular adhesion molecule-1 expressions in aortas of atherosclerotic rats. Life Sci 77(20):2529–2539

    Article  CAS  PubMed  Google Scholar 

  22. Wu X, Huang H, Tang F, Le K, Xu S, Liu P (2010) Regulated expression of endothelial lipase in atherosclerosis. Mol Cell Endocrinol 315(1–2):233–238

    Article  CAS  PubMed  Google Scholar 

  23. Yanni AE (2004) The laboratory rabbit: an animal model of atherosclerosis research. Lab Anim 38(3):246–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the National Natural Sciences Foundation of China (No. 30871070) and Natural Sciences Foundation of Hubei Province (No. 20604002—258). We are deeply indebted to Dr. H. Wulff (Department of Pharmacology, UC Davis) for providing PAP-1 and for her critical reading of the manuscript and valuable suggestions.

Conflict of interest

None of the authors has any conflict of interest pertaining to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuntai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Xu, R., Cao, M. et al. Effect of the Kv1.3 voltage-gated potassium channel blocker PAP-1 on the initiation and progress of atherosclerosis in a rat model. Heart Vessels 30, 108–114 (2015). https://doi.org/10.1007/s00380-013-0462-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-013-0462-7

Keywords

Navigation