Skip to main content
Log in

Modulation of tropical cyclogenesis in the western North Pacific by the quasi-biweekly oscillation

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The quasi-biweekly oscillation (QBWO) is the second most dominant intraseasonal mode over the western North Pacific (WNP) during boreal summer. In this study, the modulation of WNP tropical cyclogenesis (TCG) by the QBWO and its association with large-scale patterns are investigated. A strong modulation of WNP TCG events by the QBWO is found. More TCG events occur during the QBWO’s convectively active phase. Based on the genesis potential index (GPI), we further evaluate the role of environmental factors in affecting WNP TCG. The positive GPI anomalies associated with the QBWO correspond well with TCG counts and locations. A large positive GPI anomaly is spatially correlated with WNP TCG events during a life cycle of the QBWO. The low-level relative vorticity and mid-level relative humidity appear to be two dominant contributors to the QBWO-composited GPI anomalies during the QBWO’s active phase, followed by the nonlinear and potential intensity terms. These positive contributions to the GPI anomalies are partly offset by the negative contribution from the vertical wind shear. During the QBWO’s inactive phase, the mid-level relative humidity appears to be the largest contributor, while weak contributions are also made by the nonlinear and low-level relative vorticity terms. Meanwhile, these positive contributions are partly cancelled out by the negative contribution from the potential intensity. The contributions of these environmental factors to the GPI anomalies associated with the QBWO are similar in all five flow patterns—the monsoon shear line, monsoon confluence region, monsoon gyre, easterly wave, and Rossby wave energy dispersion associated with a preexisting TC. Further analyses show that the QBWO strongly modulates the synoptic-scale wave trains (SSWs) over the WNP, with larger amplitude SSWs during the QBWO’s active phase. This implies a possible enhanced (weakened) relationship between TCG and SSWs during the active (inactive) phase. This study improves our understanding of the modulation of WNP TCG by the QBWO and thus helps with efforts to improve the intraseasonal prediction of WNP TCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiyyer, A. R., and J. Molinari, 2003: Evolution of mixed Rossbygravity waves in idealized MJO environments. J. Atmos. Sci., 60, 2837–2855.

    Article  Google Scholar 

  • Bessafi, M., and M. C. Wheeler, 2006: Modulation of South Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638–656.

    Article  Google Scholar 

  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107(D24), ACL 26-1–ACL 26-15.

  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006.

    Article  Google Scholar 

  • Camargo, S. J., M. C. Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 3061–3074.

    Article  Google Scholar 

  • Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143–152.

    Article  Google Scholar 

  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. Roy. Soc. London, 464, 249–272.

    Article  Google Scholar 

  • Chang, C.-P., and G.T.-J. Chen, 1995: Tropical circulations associated with southwest monsoon onset and westerly surges over the South China Sea. Mon. Wea. Rev., 123(11), 3254–3267.

    Article  Google Scholar 

  • Chen, G. H., and C. H. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer. J. Geophys. Res., 115(D14), D14113.

  • Chen, T. C., and J. M. Chen, 1993: The 10–20-day mode of the 1979 Indian monsoon: Its relation with the time variation of monsoon rainfall. Mon. Wea. Rev., 121, 2465–2482.

    Article  Google Scholar 

  • Chen, T. C., M. C. Yen, and P. S. Weng, 2000: Interaction between the summer monsoons in East Asia and the South China Sea: Intraseasonal monsoon modes. J. Atmos. Sci., 57(9), 1373–1392.

    Article  Google Scholar 

  • Chia, H.-H, and C.-F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944.

    Article  Google Scholar 

  • Dare, R. A., and J. L. McBride, 2011: The threshold sea surface temperature condition for tropical cyclogenesis. J. Climate, 24, 4570–4576.

    Article  Google Scholar 

  • Dickinson M., J. Molinari, 2002: Mixed Rossby-gravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59(14), 2183–2196.

    Google Scholar 

  • Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A. 2.

    Google Scholar 

  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 2397–2417.

    Article  Google Scholar 

  • Fu, B., T. Li, M. S. Peng, and F. Z. Weng, 2007: Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001. Wea. Forecasting, 22, 763–780.

    Article  Google Scholar 

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.

    Article  Google Scholar 

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology Over the Tropical Oceans, D. B. Shaw, Ed., Roy, Meteorological Society, 155–218.

    Google Scholar 

  • Hartmann D. L., M. L. Michelsen, S. A. Klein, 1992: Seasonal variations of tropical intraseasonal oscillations: A 20-25-day oscillation in the western Pacific. J. Atmos. Sci., 49(14), 1277–1289.

    Article  Google Scholar 

  • Ho, C. H., J. J. Baik, J. H. Kim, D. Y. Gong, and C. H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17(9), 1767–1776.

    Article  Google Scholar 

  • Hsu, H.-H., C.-H. Weng, and C. H. Wu, 2004: Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J. Climate, 17, 727–743.

    Article  Google Scholar 

  • Huang, P., C. Chou, and R. H. Huang, 2011: Seasonal modulation of tropical intraseasonal oscillations on tropical cyclone geneses in the western North Pacific. J. Climate, 24, 6339–6352.

    Article  Google Scholar 

  • Huffman, G. J., and Coauthors, 2007: The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combinedsensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55.

    Article  Google Scholar 

  • Jiang, X. A., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–1039.

    Article  Google Scholar 

  • Jiang, X. A., M. Zhao, and D. E. Waliser, 2012: Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 6524–6538.

    Article  Google Scholar 

  • Kim, J. H., C. H. Ho, H. S. Kim, C. H. Sui, and S. K. Park, 2008: Systematic variation of summertime tropical cyclone activity in the western North Pacific in relation to the Madden-Julian oscillation. J. Climate, 21, 1171–1191.

    Article  Google Scholar 

  • Klotzbach, P. J., 2014: The Madden–Julian Oscillation’s impacts on worldwide tropical cyclone activity. J. Climate, 27(6), 2317–2330.

    Article  Google Scholar 

  • Klotzbach, P. J. and W. M. Gray, 2008: Multidecadal variability in North Atlantic tropical cyclone activity. J. Climate, 21, 3929–3935.

    Article  Google Scholar 

  • Klotzbach, P. J., and E. C. J. Oliver, 2015: Variations in global tropical cyclone activity and the Madden–Julian oscillation since the midtwentieth Century. Geophys. Res. Lett., 42, 4199–4207, doi: 10.1002/2015GL06396.

    Article  Google Scholar 

  • Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636–651.

    Article  Google Scholar 

  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 1888–1913.

    Article  Google Scholar 

  • Lee, J.-Y., B. Wang, M. C. Wheeler, X. H. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493–509.

    Article  Google Scholar 

  • Li, C. Y., and Y. P. Zhou, 1995: On quasi-two-week (10-20-day) oscillation in the tropical atmosphere. Scientia Atmospherica Sinica, 19, 435–444. (in Chinese)

    Google Scholar 

  • Li, R. C. Y., and W. Zhou, 2013a: Modulation of Western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 2904–2918.

    Google Scholar 

  • Li, R. C. Y., and W. Zhou, 2013b: Modulation of western North Pacific tropical cyclone activity by the ISO. Part II: Tracks and landfalls. J. Climate, 26, 2919–2930.

    Article  Google Scholar 

  • Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 1093–1102, doi: 10.1175/JAS3676.1.

    Article  Google Scholar 

  • Li, T., and B. Fu, 2006: Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite data analyses. J. Atmos. Sci., 63, 1377–1389.

    Google Scholar 

  • Li, T., X. Y. Ge, B. Wang, and Y. T. Zhu, 2006: Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part II: Numerical simulations. J. Atmos. Sci., 63, 1390–1409.

    Google Scholar 

  • Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian Oscillation. J. Meteor. Soc. Japan, 72, 401–412.

    Article  Google Scholar 

  • Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 4464–4476.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.

    Article  Google Scholar 

  • McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part III: Budget analysis. J. Atmos. Sci., 38, 1152–1166.

    Google Scholar 

  • McBride, J. L., R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38(6), 1132–1151.

    Google Scholar 

  • Nakazawa, T., 1986: Intraseasonal variations of OLR in the tropics during the FGGE year. J. Meteor. Soc. Japan, 64, 17–34.

    Article  Google Scholar 

  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over theWestern Pacific. J. Meteor. Soc. Japan, 66, 823–839.

    Article  Google Scholar 

  • Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369–432.

    Article  Google Scholar 

  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 1117–1133.

    Article  Google Scholar 

  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317–333.

    Article  Google Scholar 

  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 2027–2043.

    Article  Google Scholar 

  • Sobel, A. H., and C. S. Bretherton, 1999: Development of synoptic-scale disturbances over the summertime tropical northwest Pacific. J. Atmos. Sci., 56, 3106–3127.

    Article  Google Scholar 

  • Takayabu, N. Y., and T. Nitta, 1993: 3–5 day-period disturbances coupled with convection over the tropical Pacific Ocean, J. Meteor. Soc. Japan, 71, 221–246.

    Article  Google Scholar 

  • Wang, B., and X. H. Xu, 1997: Northern hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J. Climate, 10(5), 1071–1085.

    Article  Google Scholar 

  • Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658.

    Article  Google Scholar 

  • Wang, B., and X. Zhou, 2008: Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific, Meteor. Atmos. Phys., 99, 1–16, doi: 10.1007/s00703-006-0238-z.

    Article  Google Scholar 

  • Wang, L., G. H. Chen, and R. H. Huang, 2009: The modulation of quasi-biweekly oscillation on tropical cyclone activity over the western North Pacific. Chinese Journal of Atmospheric Sciences, 33, 416–424. (in Chinese)

    Google Scholar 

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.

    Article  Google Scholar 

  • Wu, L., J. Liang, and C.-C. Wu, 2011: Monsoonal Influence on Typhoon Morakot (2009). Part I: Observational Analysis. J. Atmos. Sci., 68, 2208–2221.

    Google Scholar 

  • Wu, L., and J. Duan, 2015: Extended simulation of tropical cyclone formation in the western North Pacific monsoon trough. J. Atmos. Sci., 72, 4469–4485.

    Article  Google Scholar 

  • Yasunari, T., 1979: Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242.

    Article  Google Scholar 

  • Yoshida, R., and H. Ishikawa, 2013: Environmental factors contributing to tropical cyclone genesis over the western North Pacific. Mon. Wea. Rev., 141, 451–467.

    Article  Google Scholar 

  • Yoshida, R., Y. Kajikawa, and H. Ishikawa, 2014: Impact of boreal summer intraseasonal oscillation on environment of tropical cyclone genesis over the Western North Pacific. SOLA, 10, 15–18.

    Article  Google Scholar 

  • Zhang, Q., Q. Liu, and L. Q. Wu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489–495.

    Article  Google Scholar 

  • Zhao, H. K., and L. G. Wu, 2014: Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study. Meteor. Atmos. Phys., 125, 89–101.

    Article  Google Scholar 

  • Zhao, H. K., and C. Z. Wang, 2015: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the Western North Pacific. Climate Dyn., doi: 10.1007/s00382-015-2837-1.

  • Zhao, H. K., L. G. Wu, and W. C. Zhou, 2010: Assessing the influence of the ENSO on tropical cyclone prevailing tracks in the western North Pacific. Adv. Atmos. Sci., 27(6), 1361–1371, doi: 10.1007/s00376-010-9161-9.

    Article  Google Scholar 

  • Zhao, H. K., L. G. Wu, and W. C. Zhou, 2011: Interannual changes of tropical cyclone intensity in the western north Pacific. J. Meteor. Soc. Japan, 89(3), 243–253, doi: 10.2151/jmsj.2011-305.

    Article  Google Scholar 

  • Zhao, H. K., L. G. Wu, and R. F. Wang, 2014: Decadal variations of intense tropical cyclones over the western North Pacific during 1948-2010. Adv. Atmos. Sci., 31(1), 57–65, doi: 10.1007/s00376-013-3011-5.

    Article  Google Scholar 

  • Zhao, H. K., X. A. Jiang, and L. G. Wu, 2015a: Modulation of Northwest Pacific tropical cyclone genesis by the intraseasonal variability. J. Meteor. Soc. Japan, 93(1), 81–97, doi: 10.2151/jmsj.2015-006.

    Article  Google Scholar 

  • Zhao, H. K., R. Yoshida, and G. B. Raga, 2015b: Impact of the madden-Julian oscillation on Western North Pacific tropical cyclogenesis associated with large-scale patterns. Journal of Applied Meteorology and Climatology, 54, 1423–1429, doi: 10.1175/JAMC-D-14-0254.1.

    Article  Google Scholar 

  • Zhao, H. K., X. A. Jiang, and L. G. Wu, 2016: Boreal summer synoptic-scale waves over the western North Pacific in multimodel simulations. J. Climate, doi: 10.1175/JCLI-D-15-0696.

  • Zhou, C. H., and T. Li, 2010: Upscale feedback of tropical synoptic variability to intraseasonal oscillations through the nonlinear rectification of the surface latent heat flux. J. Climate, 23, 5738–5754.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haikun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Wang, C. & Yoshida, R. Modulation of tropical cyclogenesis in the western North Pacific by the quasi-biweekly oscillation. Adv. Atmos. Sci. 33, 1361–1375 (2016). https://doi.org/10.1007/s00376-016-5267-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-5267-z

Keywords

Navigation