Skip to main content
Log in

Decadal variations of intense tropical cyclones over the western North Pacific during 1948–2010

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948–2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin were examined. By allowing all of the observed TCs in the JTWC dataset to move along the observed TC tracks in a TC intensity model, the annual category 4 and 5 TC frequency was simulated. The results agreed well with observations when the TC intensity prior to 1973 was adjusted based on time-dependent biases due to changes in measurement and reporting practices. The simulated and adjusted time series showed significant decadal (12–18 years) variability, while the interdecadal (18–32 years) variability was found to be statistically insignificant.

Numerical simulations indicated that changes in TC tracks are the most important factor for the decadal variability in the category 4 and 5 TC frequency in the western North Pacific basin, while a combined effect of changes in SST and vertical wind shear also contributes to the decadal variability. Further analysis suggested that the active phase of category 4 and 5 TCs is closely associated with an eastward shift in the TC formation locations, which allows more TCs to follow a longer journey, favoring the development of category 4 and 5 TCs. The active phase corresponds with the SST warming over the tropical central and eastern Pacific and the eastward extension of the monsoon trough, thus leading to the eastward shift in TC formation locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M. Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science, 327, 454–458.

    Article  Google Scholar 

  • Briegel, L. M., and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 1397–1413.

    Article  Google Scholar 

  • Chan, J. C. L., 2006: Comments on “Changes in tropical cyclone number, duration, and intensity in a warming environment”. Science, 311, 1713.

    Article  Google Scholar 

  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. Roy. Soc. London A, 464, 249–272, doi: 10.1098/rspa.2007.0183.

    Article  Google Scholar 

  • Dawdy, D. R., and N.C. Matalas, 1964: Statistical and probability analysis of hydrologic data, Part III: Analysis of variance, covariance and time series. Handbook of Applied Hydrology: A Compendium of Water Resources Technology, Chow, Ed., McGraw Hill, New York, 868–890.

    Google Scholar 

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430.

    Article  Google Scholar 

  • Elsner, J. B., J. P. Kossin, and T. H. Jagger, 2008: The increasing intensity of the strongest tropical cyclones. Nature, 455, 92–95.

    Article  Google Scholar 

  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483–485.

    Article  Google Scholar 

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.

    Article  Google Scholar 

  • Emanuel, K. A., 2006: Climate and tropical cyclone activity: A new model downscaling approach. J. Climate, 19, 4797–4802.

    Article  Google Scholar 

  • Emanuel, K., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 5497–5509.

    Article  Google Scholar 

  • Emanuel, K. A., 2008: The hurricane-climate connection. Bull. Amer. Meteor. Soc., 89, ES10–ES20.

    Google Scholar 

  • Emanuel, K. A., S. Ravela, E. Vivant, and C. Risi., 2006: A statistical-deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299–314.

    Article  Google Scholar 

  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347–367.

    Article  Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

    Article  Google Scholar 

  • Goldenberg S. B., Landsea C.W., Mestas-Nunez, A. M., and Gray W. M., 2001: The recent increase in Atlantic hurricane activity: causes and implications. Science, 293, 474–478.

    Article  Google Scholar 

  • Ho, C. H., J. J. Baik, J. H. Kim, D.Y. Gong, and C. H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 1767–1776.

    Article  Google Scholar 

  • Holland, G. J., 1995: Scale Interaction in the Western Pacific Monsoon. Meteo. Atmos. Phys., 56, 57–79.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kamahori, H. N., N. Yamazaki, N. Mannoji, and K. Takahashi, 2006: Variability in intense cyclone days in the western North Pacific. Scientific Online Letters on the Atmosphere, 2, 104–107, doi: 10.2151/sola.2006-027l.

    Google Scholar 

  • Kim, J. H., C. H. Ho, and P. S. Chu, 2010: Dipolar redistribution of summertime tropical cyclone genesis between the Philippine Sea and the northern South China Sea and its possible mechanisms. J. Geophys. Res., 115, D06104, doi: 10.1029/2009JD012196.

    Google Scholar 

  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 3477–3495.

    Article  Google Scholar 

  • Knutson, T. R., R. E., Tuleya, and Y., Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279, 1018–1020.

    Article  Google Scholar 

  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nature Geoscience, 3, 157–163.

    Article  Google Scholar 

  • Landsea, C.W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 1703–1713.

    Article  Google Scholar 

  • Landsea, C. W., 2007: Counting Atlantic Tropical Cyclones back to 1900. Eos Trans. Amer. Geophys. Union, 88, 197–202.

    Article  Google Scholar 

  • Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452–454.

    Article  Google Scholar 

  • Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 4464–4476.

    Article  Google Scholar 

  • Matsuura, T., M. Yumoto, and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21,105–117.

    Article  Google Scholar 

  • Ren, F., J. Liang, G. Wu, W. Dong, and X. Yang, 2011: Reliability analysis of climate change of tropical cyclone activity over the western North Pacific. J. Climate, 24, 5887–5898.

    Article  Google Scholar 

  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 2027–2043.

    Article  Google Scholar 

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 16, 149–1510.

    Google Scholar 

  • Song, J.-J., Y. Wang, and L. Wu, 2010: Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. J. Geophys. Res., 115, D12128, doi: 10.1029/2009JD013058.

    Article  Google Scholar 

  • Wang, B., and X. Zhou, 2008: Climate variability and predictability of rapid intensification in tropical cyclones in the western North Pacific. Meteor. Atmos. Phys., 99, 1–16.

    Article  Google Scholar 

  • Wang, R., L. Wu, and C. Wang, 2011: Typhoon track changes associated with global warming. J. Climate, 24, 3748–3752.

    Article  Google Scholar 

  • Webster, P. J., G. J. Holland, J. A. Curry, and H. R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846.

    Article  Google Scholar 

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.

    Google Scholar 

  • Wu, L. and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 1686–1698.

    Article  Google Scholar 

  • Wu, L., and B. Wang, 2008: What has changed the proposition of intense hurricanes in the last 30 years? J. Climate, 21, 1432–1439.

    Article  Google Scholar 

  • Wu, L., and H. Zhao, 2012: Dynamically-derived tropical cyclone intensity changes over the western North Pacific. J. Climate, 25, 89–98.

    Article  Google Scholar 

  • Wu, L., B. Wang, and S. Geng, 2005: Growing influence of Typhoon on East Asia. Geophys. Res. Lett., 32, L18703, doi: 10.1029/2005GL022937.

    Article  Google Scholar 

  • Wu, L., B. Wang, and S. A. Braun, 2008: Implications of tropical cyclone power dissipation index. Int. J. Climatol., 28, 727–731.

    Article  Google Scholar 

  • Wu, M.-C., K.-H. Yeung, and W. L. Chang, 2006: Trends in western North Pacific tropical cyclone intensity. Eos Trans. Amer. Gephys. Union, 87, 537–538.

    Article  Google Scholar 

  • Yumoto, M., and T., Matsuura, 2001: Interdecadal variability of tropical cyclone activity in the western North Pacific. J. Meteor. Soc. Japan, 79, 23–25.

    Article  Google Scholar 

  • Yumoto, M., T. Matsuura, and S. Iizuka, 2003: Interdecadal variability of tropical cyclone frequency over the western North Pacific in a high-resolution atmosphere-ocean coupled GCM. J. Meteor. Soc. Japan, 81, 1069–086.

    Article  Google Scholar 

  • Zhao, H., L. Wu, and W. Zhou, 2011: Interannual changes of tropical cyclone intensity in the western North Pacific. J. Meteor. Soc. Japan, 89(3), 243–253, doi: 10.2151/jmsj.2011-305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Wu, L. & Wang, R. Decadal variations of intense tropical cyclones over the western North Pacific during 1948–2010. Adv. Atmos. Sci. 31, 57–65 (2014). https://doi.org/10.1007/s00376-013-3011-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3011-5

Key words

Navigation