Skip to main content
Log in

Boreal winter rainfall anomaly over the tropical indo-pacific and its effect on northern hemisphere atmospheric circulation in CMIP5 models

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Experimental outputs of 11 Atmospheric Model Intercomparison Project (AMIP) models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed to assess the atmospheric circulation anomaly over Northern Hemisphere induced by the anomalous rainfall over tropical Pacific and Indian Ocean during boreal winter. The analysis shows that the main features of the interannual variation of tropical rainfall anomalies, especially over the Central Pacific (CP) (5°S-5°N, 175°E-135°W) and Indo-western Pacific (IWP) (20°S-20°N, 110°–150°E) are well captured in all the CMIP5/AMIP models. For the IWP and western Indian Ocean (WIO) (10°S-10°N, 45°–75°E), the anomalous rainfall is weaker in the 11 CMIP5/AMIP models than in the observation. During El Niño/La Niña mature phases in boreal winter, consistent with observations, there are geopotential height anomalies known as the Pacific North American (PNA) pattern and Indo-western Pacific and East Asia (IWPEA) pattern in the upper troposphere, and the northwestern Pacific anticyclone (cyclone) (NWPA) in the lower troposphere in the models. Comparison between the models and observations shows that the ability to simulate the PNA and NWPA pattern depends on the ability to simulate the anomalous rainfall over the CP, while the ability to simulate the IWPEA pattern is related to the ability to simulate the rainfall anomaly in the IWP and WIO, as the SST anomaly is same in AMIP experiments. It is found that the tropical rainfall anomaly is important in modeling the impact of the tropical Indo-Pacific Ocean on the extratropical atmospheric circulation anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., I. Blade, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205–2231.

    Article  Google Scholar 

  • Anderson, J. L., and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 4641–4673.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2: FGOALS-s2, Adv. Atm. Sci. 30(3), 561–576, doi: 10.1007/s00376-012-2113-9.

    Article  Google Scholar 

  • Bentsen, M., and Coauthors, 2012: The Norwegian earth system model, NorESM1-M-Part 1: Description and basic evaluation. Geoscientific Model Development Discussions, 5, 2843–2931.

    Article  Google Scholar 

  • Donner, L. J., and Coauthors, 2011: The Dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J. Climate, 24(13), 3484–3519.

    Article  Google Scholar 

  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 4973–4991, doi: 10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813–829.

    Article  Google Scholar 

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38(6), 1179–1196.

    Article  Google Scholar 

  • Huang, R. H., 1986: Physical mechanism of influence of heat source anomaly over low latitudes on general circulation over Northern Hemisphere in winter. Scientia Sinica-Series B, 29(1), 91–103.

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Klein, S. A., B. J. Sode, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.

    Article  Google Scholar 

  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific-Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 2009–2030.

    Article  Google Scholar 

  • Kosaka, Y., and H. Nakamura, 2010a: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific-Japan Pattern. J. Climate, 23, 5085–5108.

    Article  Google Scholar 

  • Kosaka, Y., and H. Nakamura, 2010b: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part II: A global survey. J. Climate, 23, 5109–5125.

    Article  Google Scholar 

  • Lau, N. C., and M. J. Nath, 2000: Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments. J. Climate, 13, 4287–4309.

    Article  Google Scholar 

  • Lau, N. C., and M. J. Nath, 2006: ENSO modulation of the interannual and variability of the East Asian monsoon-A model study. J. Climate, 19, 4508–4530.

    Article  Google Scholar 

  • Lau, N. C., M. J. Nath, and H. Wang, 2004: Simulations by a GFDL GCM of ENSO-related variability of the coupled atmosphere-ocean system in the East Asian monsoon region. East Asian Monsoon. World Scientific Series on Meteorology of East Asia, Vol. 2, C. P. Chang. Ed., Singapore, World Scientific, 271–300.

    Google Scholar 

  • Lee, S. K., C. Z. Wang, and B. E. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Climate, 22, 272–284.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci. 30(3), 543–560, doi: 10.1007/s00376-012-2140-6.

    Article  Google Scholar 

  • Lu, J., M. Zhang., B. Cash, and S. Li, 2011: Oceanic forcing for the East Asian rainfall in pace-making AGCM experiments. Geophys. Res. Lett., 38(L12702), doi: 10.1029/2011GL047814.

    Google Scholar 

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the northern hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390.

    Google Scholar 

  • Raddatz, T., and Coauthors, 2007: Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century?. Clim. Dyn., 29(6): 565–574.

    Article  Google Scholar 

  • Robertson, A. W., and C. R. Mechoso, 2003: Circulation regimes and low-frequency oscillations in the South Pacific sector. Mon. Wea. Rev., 131, 1566–1576.

    Article  Google Scholar 

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5. 1 global climate model: Description and basic evaluation. Climate Dyn., 40, 2091–2121.

    Article  Google Scholar 

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812.

    Article  Google Scholar 

  • Wang, B., and Q. Zhang, 2002: Pacific-East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development?. J. Climate, 15, 1643–1658.

    Article  Google Scholar 

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate?. J. Climate, 13, 1517–1536.

    Article  Google Scholar 

  • Wang, C. Z., and R. H. Weisberg, 2000: The 1997–98 El Niño evolution relative to previous El Niño events. J. Climate, 13, 488–501.

    Article  Google Scholar 

  • Wang, C. Z., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El Niño-Southern Oscillation. J. Geophys. Res., 104, 5131–5149.

    Article  Google Scholar 

  • Wang, H., Q. Y. Liu, and J. Zheng, 2013: Formation mechanism for the anomalous anticyclonic circulation over Northeast Asia and the Japan Sea in boreal winter 1997/98 and the spring of 1998. Journal of Ocean University of China, 12(2), 312–317.

    Article  Google Scholar 

  • Watanabe, and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 6312–6335.

    Article  Google Scholar 

  • Weisberg, R. H., and C. Z. Wang, 1997: A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys. Res. Lett., 24, 779–782.

    Article  Google Scholar 

  • Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22(11), 2992–3005.

    Article  Google Scholar 

  • Wu, B., T. Li, and T. J. Zhou, 2010a: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 4807–4822.

    Article  Google Scholar 

  • Wu, B., T. Li, and T. J. Zhou, 2010b: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during El Niño decaying summer. J. Climate, 23, 2974–2986.

    Article  Google Scholar 

  • Wu, T., 2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38, 725–744.

    Article  Google Scholar 

  • Xie, S., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellites estimates, and numerical model predictions. J. Climate, 9, 840–858.

    Article  Google Scholar 

  • Yukimoto, S., Y. Adachi, and M. Hosaka, 2012: A new global climate model of the Meteorological Research Institute: MRICGCM3: Model description and basic performance. J. Meteor. Soc. Japan, 90A, 23–64.

    Article  Google Scholar 

  • Zheng, J., Q. Y. Liu, C. Z. Wang, and X. T. Zheng, 2013: Impact of heating anomalies associated with rainfall variations over the indo-western Pacific on Asian atmospheric circulation in winter. Climate Dyn., 40, 2023–2033.

    Article  Google Scholar 

  • Zhou, T. J., B. Wu, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian Monsoon?. J. Climate, 22, 1159–1173.

    Article  Google Scholar 

  • Zhou, T. J., H. Hsu, and J. Matsuno, 2011: Summer monsoons in East Asia, Indochina, and the western North Pacific. The Global Monsoon System: Research and Forecast. 2nd ed., C. P. Chang et al., Eds., 2011 World Scientific Publishing Co., 43–72.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, Q. Boreal winter rainfall anomaly over the tropical indo-pacific and its effect on northern hemisphere atmospheric circulation in CMIP5 models. Adv. Atmos. Sci. 31, 916–925 (2014). https://doi.org/10.1007/s00376-013-3174-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3174-0

Key words

Navigation