Skip to main content

Advertisement

Log in

Influence of the Interdecadal Pacific Oscillation on South Asian and East Asian summer monsoon rainfall in CMIP6 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The present study investigates the influence of the Interdecadal Pacific Oscillation (IPO) on the South Asian and East Asian summer monsoon rainfall and associated ocean-atmospheric conditions in 24 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. The observations illustrate significant negative precipitation anomalies over the Central India and Central China (CICC) regions in response to positive IPO during the summer season. Almost two-thirds of the models could well represent the IPO pattern as in observations with strong sea surface temperature (SST) warming in the central to eastern Pacific and cooling in the north and south-central Pacific. CMIP6 models are classified into two groups based on the area-averaged regression of precipitation over the CICC region. Models in group 1 (G1), representation of IPO–CICC teleconnections, are somewhat similar to the observations, while in group 2 (G2), models underestimate the IPO–CICC relationship. Low-level anomalous anticyclonic circulation anomalies and moisture divergence contribute to precipitation reduction in observations and G1 models over the CICC region. In addition, the large-scale divergence at the lower level, along with the high-level convergence across the CICC region, corresponding to IPO, is as strong in the G1 models as in the observations. However, G2 models are not able to represent these circulation patterns and therefore not able to represent the IPO–CICC teleconnections well. Overall, G1 models can represent large-scale air-sea interactions across the Indo-Pacific region associated with an IPO. This study highlights the importance of capturing/simulating the reliable large-scale circulation patterns related to IPO in coupled models to capture the IPO–CICC teleconnections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Annamalai H, Sperber KR (2005) Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J Atmos Sci 62(8):2726–2748

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S (2011) The twentieth century reanalysis project. Quart J Roy Meteor Soc. https://doi.org/10.1002/qj.776

    Article  Google Scholar 

  • Dai A (2013) The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim Dyn 41(3–4):633–646

    Article  Google Scholar 

  • Dai A, Fyfe JC, Xie SP, Dai X (2015) Decadal modulation of global surface temperature by internal climate variability. Nat Clim Change 5(6):555–559

    Article  Google Scholar 

  • Ding Y, Wang Z, Sun Y (2008) Inter-decadal variation of the summer precipitation in east China and its association with decreasing Asian summer monsoon. Part I: observed evidences. J R Meteor Soc 28(9):1139–1161

    Google Scholar 

  • Ding Y, Sun Y, Wang Z, Zhu Y, Song Y (2009) Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon part II: possible causes. J R Meteor Soc 29(13):1926–1944

    Google Scholar 

  • Dong B, Dai A (2015) The influence of the Interdecadal Pacific Oscillation on temperature and precipitation over the Globe. Clim Dyn 45(9–10):2667–2681. https://doi.org/10.1007/s00382-015-2500-x

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Gadgil S, Gadgil S (2006) The Indian monsoon, GDP and agriculture. Econ Polit Wkly 4887–4895

  • Gadgil S, Rajeevan M, Nanjundiah R (2005) Monsoon prediction why yet another failure. Curr Sci 88(9):1389–1400

    Google Scholar 

  • Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33(2):L02706

    Article  Google Scholar 

  • Harris IC, Jones PD (2017) CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2016). Cent Environ Data Anal. https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0

    Article  Google Scholar 

  • Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne TM, Woodruff SD, Zhang HM (2014) Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons. J Clim 28(3):911–930. https://doi.org/10.1175/JCLI-D-14-00006.1

    Article  Google Scholar 

  • Huang X, Zhou T, Turner A, Dai A, Chen X, Clark R, Jiang J, Man W, Murphy J, Rostron J, Wu B (2020a) The recent decline and recovery of Indian summer monsoon rainfall: relative roles of external forcing and internal variability. J Clim 33(12):5035–5060

    Article  Google Scholar 

  • Huang X, Zhou T, Dai A, Li H, Li C, Chen X, Lu J, Von Storch JS, Wu B (2020b) South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation. Sci Adv 6(11)

  • Joshi MK, Fred K (2017) Impact of Interdecadal Pacific Oscillation on Indian summer monsoon rainfall: an assessment from CMIP5 climate models. Clim Dyn 48(7–8):2357–2391

    Google Scholar 

  • Joshi M K, Pandey AC (2011) Trend and spectral analysis of rainfall over India during 1901–2000. J Geophys Res Atmos 116(D6)

  • Joshi MK, Rai A (2015) Combined interplay of the Atlantic multidecadal oscillation and the Interdecadal Pacific Oscillation on rainfall and its extremes over Indian subcontinent. Clim Dyn 44(11–12):3339–3359

    Article  Google Scholar 

  • Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–407

    Article  Google Scholar 

  • Krishnamurthy L, Krishnamurthy VJ (2014) Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Clim Dyn 42(9–10):2397–2410

    Article  Google Scholar 

  • Krishnan R, Sugi M (2003) Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim Dyn 21(3–4):233–242

    Article  Google Scholar 

  • Kucharski F, Molteni F, Yoo JH (2006) SST forcing of decadal Indian monsoon rainfall variability. Geophys Res Lett 33(3):L03709. https://doi.org/10.1029/2005GL025371

    Article  Google Scholar 

  • Kucharski F, Scaife AA, Yoo JH, Folland CK, Kinter J, Knight J, Fereday D, Fischer AM, Jin EK, Kröger J, Lau NC (2009) The CLIVAR C20C project: skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role? Clim Dyn 33(5):615–627

    Article  Google Scholar 

  • Lu R, Dong B, Ding H (2006) Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys Res Lett 33(24):L24701. https://doi.org/10.1029/2006GL027655

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific Interdecadal Climate Oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079

    Article  Google Scholar 

  • Meehl GA, Hu AX (2006) Mega droughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J Clim 19(9):1605–1623

    Article  Google Scholar 

  • Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim 26(18):7298–7310

    Article  Google Scholar 

  • Min YM, Kryjov VN, Oh SM (2014) Assessment of APCC multimodel ensemble prediction in seasonal climate forecasting: retrospective (1983–2003) and real-time forecasts (2008–2013). J Geophys Res Atmos 119(21):12–132. https://doi.org/10.1002/2014jd022230

    Article  Google Scholar 

  • Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37(3–4):419–440. https://doi.org/10.1007/s00382-010-0867-2

    Article  Google Scholar 

  • Murphy JM, Sexton DM, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430(7001):768–772

    Article  Google Scholar 

  • Parker DE, Folland CK, Scaife AA, Colman A, Knight J, Fereday D, Baines P, Smith D (2007) Decadal to multidecadal variability and the climate change background. J Geophys Res 112:D18115–D18118. https://doi.org/10.1029/2007JD008411

    Article  Google Scholar 

  • Pathak A, Ghosh S, Martinez JA, Dominguez F, Kumar P (2017) Role of oceanic and land moisture sources and transport in the seasonal and interannual variability of summer monsoon in India. J Clim 30(5):1839–1859

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter decadal modulation of the impact of ENSO on Australia. Clim Dyn 15(5):319–324. https://doi.org/10.1007/s003820050284

    Article  Google Scholar 

  • Ronghui H, Zhenzhou Z, Gang H, Baohua R (1998) Characteristics of the water vapor transport in East Asian monsoon region and its difference from that in South Asian monsoon region in summer. Chin J Atmos Sci 22:368–379

    Google Scholar 

  • Sahai AK, Chattopadhyay R, Goswami BN (2008) A SST based large multi-model ensemble forecasting system for Indian summer monsoon rainfall. Geophys Res Lett 35(19):L19705. https://doi.org/10.1029/2008GL035461

    Article  Google Scholar 

  • Schott FA, Xie SP, McCreary J (2009) Indian Ocean circulation and climate variability. Rev Geophys 47(1):RG1002. https://doi.org/10.1029/2007RG000245

    Article  Google Scholar 

  • Sheffield J, Camargo SJ, Fu R, Hu Q, Jiang X, Johnson N, Karnauskas KB, Kim ST, Kinter J, Kumar S, Langenbrunner B (2013) North American climate in CMIP5 experiments. Part II: evaluation of historical simulations of intraseasonal to decadal variability. J Clim 26(23):9247–9290. https://doi.org/10.1175/jcli-d-12-00593.1

    Article  Google Scholar 

  • Sun Y, Ding Y (2010) A projection of future changes in summer precipitation and monsoon in East Asia. Sci China Earth Sci 53:284–300. https://doi.org/10.1007/s11430-009-0123-y

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192. https://doi.org/10.1029/2000jd900719

    Article  Google Scholar 

  • Tokinaga H, Xie SP, Timmermann A, McGregor S, Ogata T, Kubota H, Okumura YM (2012) Regional patterns of tropical Indo-Pacific climate change: evidence of the Walker circulation weakening. J Clim 25(5):1689–1710

    Article  Google Scholar 

  • Trenberth KE, Fasullo J (2013) An apparent hiatus in global warming. Earth Future 1:19–32

    Article  Google Scholar 

  • Verdon DC, Wyatt AM, Kiem AS, Franks SW (2004) Multidecadal variability of rainfall and streamflow: eastern Australia. Water Res Res 40(10)

  • Wang H (2001) The weakening of the Asian monsoon circulation after the end of 1970’s. Adv Atmos Sci 18:376–386. https://doi.org/10.1007/BF02919316

    Article  Google Scholar 

  • Wang B, Li T (2004) East Asian monsoon and ENSO interaction. In: Chang C-P (ed) East Asian monsoon. World Scientific, pp 172–212. https://doi.org/10.1142/9789812701411_0005

    Chapter  Google Scholar 

  • Wang B, Wu Z, Li J, Liu J, Chang CP, Ding Y, Wu G (2008) How to measure the strength of the East Asian summer monsoon. J Clim 21(17):4449–4463. https://doi.org/10.1175/2008JCLI2183.1

    Article  Google Scholar 

  • Wang B, Yim SY, Lee JY, Liu J, Ha KJ (2013) Future change of Asian–Australian monsoon under RCP 4.5 anthropogenic warming scenario. Clim Dyn 42(1–2):83–100. https://doi.org/10.1007/s00382-013-1769-x

    Article  Google Scholar 

  • Wang J, Gui S, Ma A, Yang R, Zhang Q (2019) Interdecadal variability of summer precipitation efficiency in East Asia. Adv Meteorol. https://doi.org/10.1155/2019/3563024

    Article  Google Scholar 

  • Zhang Z, Sun X, Yang XQ (2018) Understanding the interdecadal variability of East Asian summer monsoon precipitation: joint influence of three oceanic signals. J Clim 31(14):5485–5506

    Article  Google Scholar 

  • Zhou TJ, Yu RC (2005) Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res Atmos 110(D8):D08104. https://doi.org/10.1029/2004JD005413

    Article  Google Scholar 

  • Zhu YM, Yang XQ (2003a) Relationship between Pacific decadal oscillation and climate variabilities in China. Acta Meteor Sin 61(6):641–654

    Google Scholar 

  • Zhu YM, Yang X (2003b) Relationships between Pacific decadal oscillation (PDO) and climate variabilities in China. Acta Meteor Sin 61:641–654

    Google Scholar 

  • Zhu YL, Wang H, Ma J, Wang T, Sun J (2015) Contribution of the phase transition of Pacific decadal oscillation to the late 1990s’ shift in east China summer rainfall. J Geophys Res Atmos 120:8817–8827. https://doi.org/10.1002/2015JD023545

    Article  Google Scholar 

Download references

Acknowledgements

We thank the climate modeling groups for making and producing their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies that support CMIP6 and ESGF. We thank the NCAR for making available the NCAR Command Language (NCL). All data sources are duly acknowledged. This work is supported by the National Natural Science Foundation of China (41830538, 42090042 and 42175043), the Chinese Academy of Sciences (183311KYSB20200015, ISEE2021PY02, ISEE2021ZD01, 33244KYSB20190031 and ISEE2018PY06), and the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0303, GML2019ZD0306, 2019BT02H594).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zesheng Chen or Yan Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinta, V., Chen, Z., Du, Y. et al. Influence of the Interdecadal Pacific Oscillation on South Asian and East Asian summer monsoon rainfall in CMIP6 models. Clim Dyn 58, 1791–1809 (2022). https://doi.org/10.1007/s00382-021-05992-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05992-6

Keywords

Navigation