Skip to main content
Log in

Soil properties affecting adsorption of plasmid DNA and its transformation efficiency in Escherichia coli

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

We examined the soil properties affecting adsorption of plasmid DNA and its transformation efficiency using competent Escherichia coli cells in sterile forested Andosols (n = 2), arable Andosols (n = 3), arable Cambisols (n = 2), and humic acid. Organic matter-removed soil samples were also prepared by subjecting each soil to ignition treatment. The amount of plasmid DNA adsorbed was influenced by individual soil properties rather than soil types and fertilizer management practices. Among the soil properties determined, organic matter content and pH appeared to have the greatest influence on the amount of DNA adsorbed onto soil samples. Adsorption of plasmid DNA greatly repressed the transformation efficiency of E. coli relative to free DNA. Decreased transformation efficiency was observed in samples showing high binding affinity for plasmid DNA, and the affinity appeared to be affected by exchangeable Ca, soil texture, and humic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brigulla M, Wackernagel W (2010) Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues. Appl Microbiol Biotechnol 86:1027–1041

    Article  CAS  PubMed  Google Scholar 

  • Cai P, Huang Q, Chen W, Zhang D, Wang K, Jiang D, Liang W (2007a) Soil colloids-bound plasmid DNA: effect on transformation of E. coli and resistance to DNase I degradation. Soil Biol Biochem 39:1007–1013

    Article  CAS  Google Scholar 

  • Cai P, Huang Q, Zhu J, Jiang D, Zhou X, Rong X, Liang W (2007b) Effects of low-molecular-weight organic ligands and phosphate on DNA adsorption by soil colloids and minerals. Colloid Surf B 54:53–59

    Article  CAS  Google Scholar 

  • Chamier B, Lorenz MG, Wackernagel W (1993) Natural transformation of Acinetobacter calcoaceticus by plasmid DNA adsorbed on sand and groundwater aquifer material. Appl Environ Microbiol 59:1662–1667

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crecchio C, Stotzky G (1998) Binding of DNA on humic acids: effect on transformation of Bacillus subtilis and resistance to DNase. Soil Biol Biochem 30:1061–1067

    Article  CAS  Google Scholar 

  • Crecchio C, Ruggiero P, Curci M, Colombo C, Palumbo G, Stotzky G (2005) Binding of DNA from Bacillus subtilis on montmorillonite-humic acids-aluminum of iron hydroxypolymers: effects on transformation and protection against DNase. Soil Sci Soc Am J 69:834–841

    Article  CAS  Google Scholar 

  • de Vries J, Wackernagel W (2004) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266:91–104

    Article  Google Scholar 

  • Franchi M, Ferris JP, Gallori E (2003) Cations as mediators of the adsorption of nucleic acids on clay surfaces in prebiotic environments. Orig Life Evol Biosph 33:1–16

    Article  CAS  PubMed  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis, Part 1, Physical and mineralogical methods, second edition. American Society of Agronomy, and Soil Science Society of America, Madison, WI, pp 383–411

    Google Scholar 

  • Hannula SE, de Boer W, van Veen JA (2014) Do genetic modifications in crops affect soil fungi?: a review. Biol Fertil Soils 50:433–446

    Article  CAS  Google Scholar 

  • Kan Y, Tan Q, Wu G, Si W, Chen Y (2015) Study of DNA adsorption on mica surfaces using a surface force apparatus. Sci Rep 5:8442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levy-Booth DJ, Campbell RG, Gulden RH, Hart MM, Powell JR, Klironomos JN, Pauls KP, Swanton CJ, Trevors JT, Dunfield KE (2007) Cycling of extracellular DNA in the soil environment. Soil Biol Biochem 39:2977–2991

    Article  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moro H, Kunito T, Saito T, Yaguchi N, Sato T (2014) Soil microorganisms are less susceptible than crop plants to potassium deficiency. Arch Agron Soil Sci 60:1807–1813

    CAS  Google Scholar 

  • Moro H, Kunito T, Sato T (2015) Assessment of phosphorus bioavailability in cultivated Andisols from a long-term fertilization field experiment using chemical extractions and soil enzyme activities. Arch Agron Soil Sci 61:1107–1123

  • Nguyen TH, Chen KL (2007) Role of divalent cations in plasmid DNA adsorption to natural organic matter-coated silica surface. Environ Sci Technol 41:5370–5375

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TH, Elimelech M (2007) Plasmid DNA adsorption on silica: kinetics and conformational changes in monovalent and divalent salts. Biomacromolecules 8:24–32

    Article  CAS  PubMed  Google Scholar 

  • Overballe-Petersen S, Harms K, Orlando LAA, Mayar JVM, Rasmussen S, Dahl TW, Rosing MT, Poole AM, Sicheritz-Ponten T, Brunak S, Inselmann S, de Vries J, Wackernagel W, Pybus OG, Nielsen R, Johnsen PJ, Nielsen KM, Willerslev E (2013) Bacterial natural transformation by highly fragmented and damaged DNA. Proc Natl Acad Sci U S A 110:19860–19865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paget E, Simonet P (1994) On the track of natural transformation in soil. FEMS Microbiol Ecol 15:109–118

    Article  CAS  Google Scholar 

  • Pastré D, Hamon L, Sorel I, Cam EL, Curmi PA, Piétrement O (2010) Specific DNA–protein interactions on mica investigated by atomic force microscopy. Langmuir 26:2618–2623

    Article  PubMed  Google Scholar 

  • Pietramellara G, Ceccherini MT, Ascher J, Nannipieri P (2006) Persistence of transgenic and not transgenic extracellular DNA in soil and bacterial transformation. Biol Forum 99:37–68

    Google Scholar 

  • Pietramellara G, Ascher J, Ceccherini MT, Nannipieri P, Wenderoth D (2007) Adsorption of pure and dirty bacterial DNA on clay minerals and their transformation frequency. Biol Fertil Soils 43:731–739

    Article  CAS  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235

    Article  CAS  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl Environ Microbiol 57:1057–1061

    PubMed Central  CAS  PubMed  Google Scholar 

  • Romanowski G, Lorenz MG, Wackernagel W (1993) Plasmid DNA in a groundwater aquifer microcosm—adsorption, DNase resistance and natural genetic transformation of Bacillus subtilis. Mol Ecol 2:171–181

    Article  CAS  PubMed  Google Scholar 

  • Saeki K, Kunito T (2009) Estimating sorption affinities of heavy metals on humic acid and silica using constant capacitance model. Commun Soil Sci Plant Anal 40:3252–3262

    Article  CAS  Google Scholar 

  • Saeki K, Kunito T (2010) Adsorptions of DNA molecules by soils and variable-charged soil constituents. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 1. Formatex Research Centre, Badajoz, Spain, pp 188–195

    Google Scholar 

  • Saeki K, Sakai M (2009) The influence of soil organic matter on DNA adsorption on Andosols. Microbes Environ 24:175–179

  • Saeki K, Morisaki M, Sakai M (2008) The contribution of soil constituents to adsorption of extracellular DNA by soils. Microbes Environ 23:353–355

    Article  PubMed  Google Scholar 

  • Saeki K, Kunito T, Sakai M (2010a) Effects of pH, ionic strength, and solutes on DNA adsorption by andosols. Biol Fertil Soils 46:531–535

    Article  CAS  Google Scholar 

  • Saeki K, Sakai M, Wada S-I (2010b) DNA adsorption on synthetic and natural allophanes. Appl Clay Sci 50:493–497

    Article  CAS  Google Scholar 

  • Saeki K, Ihyo Y, Sakai M, Kunito T (2011a) Strong adsorption of DNA molecules on humic acids. Environ Chem Lett 9:505–509

    Article  CAS  Google Scholar 

  • Saeki K, Kunito T, Sakai M (2011b) Effect of Tris-HCl buffer on DNA adsorption by a variety of soil constituents. Microbes Environ 26:88–91

    Article  PubMed  Google Scholar 

  • Saeki K, Sakai M, Kunito T (2012) Effect of α-casein on DNA adsorption by Andosols and by soil components. Biol Fertil Soils 48:469–474

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, USA

    Google Scholar 

  • Singer VL, Jones LJ, Yue ST, Haugland RP (1997) Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal Biochem 249:228–238

    Article  CAS  PubMed  Google Scholar 

  • Stark PC, Mullen KI, Banton K, Russotti R, Soran D, Kuske CR (2000) Pre-PCR DNA quantification of soil and sediment samples: method development and instrument design. Soil Biol Biochem 32:1101–1110

    Article  CAS  Google Scholar 

  • Stotzky G (1989) Gene transfer among bacteria in soil. In: Levy SB, Miller RV (eds) Gene transfer in the environment. McGraw-Hill, New York, pp 165–222

    Google Scholar 

  • Stotzky G (2000) Persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis and of bacterial DNA bound on clays and humic acids. J Environ Qual 29:691–705

    Article  CAS  Google Scholar 

  • Swift RS (1996) Organic matter characterization. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis, Part 3, chemical methods. Soil Science Society of America, American Society of Agronomy, Madison, WI, pp 1011–1069

    Google Scholar 

  • Theng BKG (2012) Formation and properties of clay-polymer complexes, second edition. Developments in clay science Vol. 4. Elsevier, Amsterdam

  • Wackernagel W (2006) The various sources and the fate of nucleic acids in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer-Verlag, Berlin, pp 117–139

    Chapter  Google Scholar 

  • Watson SK, Carter PE (2008) Environmental influences on Acinetobacter sp. strain BD413 transformation in soil. Biol Fertil Soils 45:83–92

    Article  Google Scholar 

  • Yin X, Stotzky G (1997) Gene transfer among bacteria in natural environments. Adv Appl Microbiol 45:153–212

    Article  CAS  PubMed  Google Scholar 

  • Young EO, Ross DS, Cade-Menun BJ, Liu CW (2013) Phosphorus speciation in riparian soils: a phosphorus-31 nuclear magnetic resonance spectroscopy and enzyme hydrolysis study. Soil Sci Soc Am J 77:1636–1647

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Y. Tateno and Y. Ichikawa for their technical assistance. This study was supported by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (grant no. 22380180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kunito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunito, T., Ihyo, Y., Miyahara, H. et al. Soil properties affecting adsorption of plasmid DNA and its transformation efficiency in Escherichia coli . Biol Fertil Soils 52, 223–231 (2016). https://doi.org/10.1007/s00374-015-1068-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1068-2

Keywords

Navigation