Skip to main content
Log in

Do genetic modifications in crops affect soil fungi? a review

  • Review
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The use of genetically modified (GM) plants in agriculture has been a topic in public debate for over a decade. Despite their potential to increase yields, there may be unintended negative side-effects of GM plants on soil micro-organisms that are essential for functioning of agro-ecosystems. Fungi are important soil organisms and can have beneficial or harmful effects on plants. Their benefits to agro-ecosystems come from their activities as free-living saprobes breaking down soil organic matter thereby releasing nutrients to the crops, as well as from mutualistic interactions. On the other hand, soil-borne plant pathogenic fungi can cause severe damage in crops. Understanding of the impact of GM plants on the dynamics and functioning of soil fungi is essential to evaluate the possible risks of introduction of GM plants for ecosystem functioning. In recent years, over 50 studies have addressed the effects of various GM traits in crops on soil fungal community structure and function. These studies showed that GM crops can have positive, negative, or neutral effects on both free-living and plant-associated soil fungi. The observed discrepancy in results of these studies is discussed. This is done by highlighting a number of case studies. New methods developed in recent years have enabled microbial ecologists to get a better picture on the functioning and assembly of soil fungal communities. This review presents and discusses two of the most promising methods which are also readily usable in risk assessment of GM plants on soil fungi and that could help answer remaining key questions in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Berg B, McClaugherty C (2008) Plant litter: decomposition, humus formation, carbon sequestration (second ed.). Springer, Berlin, New York

    Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13

    CAS  PubMed  Google Scholar 

  • Birch ANE, Griffiths BS, Caul S, Thompson J, Heckmann LH, Krogh PH, Cortet J (2007) The role of laboratory, glasshouse and field scale experiments in understanding the interactions between genetically modified crops and soil ecosystems: a review of the ECOGEN project. Pedobiologia 51(3):251–260

    CAS  Google Scholar 

  • Blackwood CB, Buyer JS (2004) Soil microbial communities associated with Bt and non-Bt corn in three soils. J Environ Qual 33:832–836

    CAS  PubMed  Google Scholar 

  • Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertility Soils 37(6):329–337

    Google Scholar 

  • Burgess MS, Mehuys GR, Madramootoo CA (2002) Decomposition of grain-corn residues (Zea mays L.): a litterbag study under three tillage systems. Can J Soil Sci 82(2):127–138

    Google Scholar 

  • Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi, 2nd edn. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B, Nuti MP, Miclaus N, Giovannetti M (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71(11):6719–6729. doi:10.1128/aem.71.11.6719-6729.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertility Soils 48(5):489–499. doi:10.1007/s00374-012-0691-4

    Google Scholar 

  • Cheeke TE, Pace BA, Rosenstiel TN, Cruzan MB (2011) The influence of fertilizer level and spore density on arbuscular mycorrhizal colonization of transgenic Bt 11 maize (Zea mays) in experimental microcosms. FEMS Microbiol Ecol 75(2):304–312. doi:10.1111/j.1574-6941.2010.01013.x

    CAS  PubMed  Google Scholar 

  • Cheeke TE, Rosenstiel TN, Cruzan MB (2012) Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize. Am J Bot 99(4):700–707. doi:10.3732/ajb.1100529

    PubMed  Google Scholar 

  • Cheeke TE, Cruzan MB, Rosenstiel TN (2013) Field evaluation of arbuscular mycorrhizal fungal colonization in Bacillus thuringiensis toxin-expressing (Bt) and non-Bt maize. Appl Environ Microbiol 79(13):4078–4086. doi:10.1128/aem.00702-13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chun Y, Kim H-J, Park K, Jeong S-C, Lee B, Back K, Kim H, Kim C-G (2012) Two-year field study shows little evidence that PPO-transgenic rice affects the structure of soil microbial communities. Biol Fertility Soils 48(4):453–461. doi:10.1007/s00374-011-0626-5

    Google Scholar 

  • Cortet J, Andersen MN, Caul S, Griffiths B, Joffre R, Lacroix B, Sausse C, Thompson J, Krogh PH (2006) Decomposition processes under Bt (Bacillus thuringiensis) maize: results of a multi-site experiment. Soil Biol Biochem 38(1):195–199

    CAS  Google Scholar 

  • Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56(2):236–249

    CAS  PubMed  Google Scholar 

  • Cowgill SE, Bardgett RD, Kiezebrink DT, Atkinson HJ (2002) The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. J Appl Ecol 39(6):915–923

    Google Scholar 

  • Daudu CK, Muchaonyerwa P, Mnkeni PNS (2009) Litterbag decomposition of genetically modified maize residues and their constituent Bacillus thuringiensis protein (Cry1Ab) under field conditions in the central region of the Eastern Cape, South Africa. Agric Ecosyst Environ 134(3–4):153–158. doi:10.1016/j.agee.2009.06.012

    CAS  Google Scholar 

  • de Vaufleury A, Kramarz PE, Binet P, Cortet J, Caul S, Andersen MN, Plumey E, Coeurdassier M, Krogh PH (2007) Exposure and effects assessments of Bt-maize on non-target organisms (gastropods, microarthropods, mycorrhizal fungi) in microcosms. Pedobiologia 51(3):185–194. doi:10.1016/j.pedobi.2007.04.005

    Google Scholar 

  • de Vries FT, van Groenigen JW, Hoffland E, Bloem J (2011) Nitrogen losses from two grassland soils with different fungal biomass. Soil Biol Biochem 43(5):997–1005. doi:10.1016/j.soilbio.2011.01.016

    Google Scholar 

  • de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Bracht Jørgensen H, Brady MV, Christensen S, de Ruiter PC, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Hol WHG, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci USA 110(35):14296–14301. doi:10.1073/pnas.1305198110

    PubMed Central  PubMed  Google Scholar 

  • Deacon LJ, Pryce-Miller EJ, Frankland JC, Bainbridge BW, Moore PD, Robinson CH (2006) Diversity and function of decomposer fungi from a grassland soil. Soil Biol Biochem 38(1):7–20

    CAS  Google Scholar 

  • Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL, Bucao LQ, Seidler RJ (1995) Changes in levels, species and DNA fingerprints of soil-microorganisms associated with cotton expressing the Bacillus-Thuringiensis var Kurstaki endotoxin. Appl Soil Ecol 2(2):111–124

    Google Scholar 

  • Donegan KK, Schaller DL, Stone JK, Ganio LM, Reed G, Hamm PB, Seidler RJ (1996) Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var tenebrionis endotoxin. Transgenic Res 5(1):25–35

    CAS  Google Scholar 

  • Donegan KK, Seidler RJ, Doyle JD, Porteous LA, Digiovanni G, Widmer F, Watrud LS (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J Appl Ecol 36(6):920–936

    Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak A, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, van Veen JA, Kowalchuk GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci USA 107(24):10938–10942. doi:10.1073/pnas.0912421107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol Ecol 38(1):1–9

    CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl Environ Microbiol 69(12):7310–7318. doi:10.1128/aem.69.12.7310-7318.2003

  • Fang M, Motavalli PP, Kremer RJ, Nelson KA (2007) Assessing changes in soil microbial communities and carbon mineralization in Bt and non-Bt corn residue-amended soils. Appl Soil Ecol 37(1–2):150–160. doi:10.1016/j.apsoil.2007.06.001

    Google Scholar 

  • Fließbach A, Messmer M, Nietlispach B, Infante V, Mader P (2012) Effects of conventionally bred and Bacillus thuringiensis (Bt) maize varieties on soil microbial biomass and activity. Biol Fertility Soils 48(3):315–324. doi:10.1007/s00374-011-0625-6

    Google Scholar 

  • Flores S, Saxena D, Stotzky G (2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biol Biochem 37(6):1073–1082

    CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. doi:10.1146/annurev.phyto.42.012604.135455

    CAS  PubMed  Google Scholar 

  • Girlanda M, Bianciotto V, Cappellazzo GA, Casieri L, Bergero R, Martino E, Luppi AM, Perotto S (2008) Interactions between engineered tomato plants expressing antifungal enzymes and nontarget fungi in the rhizosphere and phyllosphere. FEMS Microbiol Lett 288(1):9–18. doi:10.1111/j.1574-6968.2008.01306.x

    CAS  PubMed  Google Scholar 

  • Götz M, Nirenberg H, Krause S, Wolters H, Draeger S, Buchner A, Lottmann J, Berg G, Smalla K (2006) Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiol Ecol 58(3):404–413

    PubMed  Google Scholar 

  • Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37(2):112–129. doi:10.1111/j.1574-6976.2012.00343.x

    CAS  PubMed  Google Scholar 

  • Griffiths BS, Geoghegan IE, Robertson WM (2000) Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes. J Appl Ecol 37:159–170

    Google Scholar 

  • Gschwendtner S, Reichmann M, Muller M, Radl V, Munch JC, Schloter M (2010) Effects of genetically modified amylopectin-accumulating potato plants on the abundance of beneficial and pathogenic microorganisms in the rhizosphere. Plant Soil 335(1–2):413–422. doi:10.1007/s11104-010-0430-2

    CAS  Google Scholar 

  • Gschwendtner S, Esperschütz J, Buegger F, Reichmann M, Müller M, Munch JC, Schloter M (2011) Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates. FEMS Microbiol Ecol 76(3):564–575. doi:10.1111/j.1574-6941.2011.01073.x

    CAS  PubMed  Google Scholar 

  • Hannula SE, de Boer W, van Veen JA (2010) In situ dynamics of soil fungal communities under different genotypes of potato, including a genetically modified cultivar. Soil Biol Biochem 42(12):2211–2223. doi:10.1016/j.soilbio.2010.08.020

    CAS  Google Scholar 

  • Hannula SE, Boschker HTS, de Boer W, van Veen JA (2012a) 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline. New Phytol 194(3):784–799. doi:10.1111/j.1469-8137.2012.04089.x

    CAS  PubMed  Google Scholar 

  • Hannula SE, de Boer W, van Veen J (2012b) A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects. PloS ONE 7(4):e33819. doi:10.1371/journal.pone.0033819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hannula SE, de Boer W, Baldrian P, Van Veen JA (2013) Effects of genetically modified amylopectin-accumulating potato in decomposer processes and fungal diversity in litter and soil. Soil Biol Biochem 58:88–98

    CAS  Google Scholar 

  • Hart MM, Powell JR, Gulden RH, Dunfield KE, Pauls KP, Swanton CJ, Klironomos JN, Antunes PM, Koch AM, Trevors JT (2009) Separating the effect of crop from herbicide on soil microbial communities in glyphosate-resistant corn. Pedobiologia 52(4):253–262. doi:10.1016/j.pedobi.2008.10.005

    CAS  Google Scholar 

  • Heinze S, Raupp J, Joergensen RG (2010) Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil 328(1–2):203–215. doi:10.1007/s11104-009-0102-2

    CAS  Google Scholar 

  • Henault C, English LC, Halpin C, Andreux F, Hopkins DW (2006) Microbial community structure in soils with decomposing residues from plants with genetic modifications to lignin biosynthesis. FEMS Microbiol Lett 263(1):68–75. doi:10.1111/j.1574-6968.2006.00416.x

    CAS  PubMed  Google Scholar 

  • Holland EA, Coleman DC (1987) Litter placement effects on microbial and organic-matter dynamics in an agroecosystem. Ecology 68(2):425–433. doi:10.2307/1939274

    Google Scholar 

  • Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40(3):559–586

    CAS  Google Scholar 

  • Icoz I, Saxena D, Andow DA, Zwahlen C, Stotzky G (2008) Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis. J Environ Qual 37:647–662

    CAS  PubMed  Google Scholar 

  • Inceoglu O, Salles JF, van Overbeek L, van Elsas JD (2010) Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl Environ Microbiol 76(11):3675–3684. doi:10.1128/aem.00040-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • James C (2012) Global status of commercialized biotech/GM crops: 2012. ISAAA Brief No. 44. International Service for the Acquisition of Agri-Biotech Applications, Ithaca

    Google Scholar 

  • Jones JDG (2011) Why genetically modified crops? Phil Trans R Soc A 369(1942):1807–1816. doi:10.1098/rsta.2010.0345

    PubMed  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    CAS  Google Scholar 

  • Jung HG, Sheaffer CC (2004) Influence of Bt transgenes on cell wall lignification and digestibility of maize stover for silage. Crop Sci 44(5):1781–1789

    CAS  Google Scholar 

  • Kaldorf M, Fladung M, Muhs H-JM, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214(4):653–660. doi:10.1007/s004250100658

    CAS  PubMed  Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74(1–3):65–76

    Google Scholar 

  • Knox OGG, Nehl DB, Mor T, Roberts GN, Gupta VVSR (2008) Genetically modified cotton has no effect on arbuscular mycorrhizal colonisation of roots. Field Crops Res 109(1–3):57–60. doi:10.1016/j.fcr.2008.06.005

    Google Scholar 

  • Kowalchuk GA, Bruinsma M, van Veen JA (2003) Assessing responses of soil microorganisms to GM plants. Trends Ecol Evol 18(8):403–410

    Google Scholar 

  • Kremer RJ, Means NE (2009) Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. Eur J Agron 31(3):153–161. doi:10.1016/j.eja.2009.06.004

    CAS  Google Scholar 

  • Kuramae EE, Verbruggen E, Hillekens R, de Hollander M, Roling WFM, van der Heijden MGA, Kowalchuk GA (2013) Tracking Fungal Community Responses to Maize Plants by DNA- and RNA-Based Pyrosequencing. PloS ONE 8 (7). doi:10.1371/journal.pone.0069973

  • Lawhorn CN, Neher DA, Dively GP (2009) Impact of coleopteran targeting toxin (Cry3Bb1) of Bt corn on microbially mediated decomposition. Appl Soil Ecol 41(3):364–368. doi:10.1016/j.apsoil.2008.12.003

    Google Scholar 

  • Lee S-H, Kim C-G, Kang H (2011) Temporal dynamics of bacterial and fungal communities in a genetically modified (GM) rice ecosystem. Microb Ecol 61(3):646–659. doi:10.1007/s00248-010-9776-5

    PubMed  Google Scholar 

  • Li X, Liu B, Cui J, Liu D, Ding S, Gilna B, Luo J, Fang Z, Cao W, Han Z (2011) No evidence of persistent effects of continuously planted transgenic insect-resistant cotton on soil microorganisms. Plant Soil 339(1):247–257. doi:10.1007/s11104-010-0572-2

    CAS  Google Scholar 

  • Lilley AK, Bailey MJ, Cartwright C, Turner SL, Hirsch PR (2006) Life in earth: the impact of GM plants on soil ecology? Trends Biotechnol 24(1):9–14

    CAS  PubMed  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers — a user’s guide. New Phytol 199(1):288–299. doi:10.1111/nph.12243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu WK (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ecotoxicology 19(2):229–238. doi:10.1007/s10646-009-0423-1

    CAS  PubMed  Google Scholar 

  • Liu B, Zeng Q, Yan FM, Xu HG, Xu CR (2005) Effects of transgenic plants on soil microorganisms. Plant Soil 271(1–2):1–13

    CAS  Google Scholar 

  • Liu W, Hao Lu H, Wu W, Kun Wei Q, Xu Chen Y, Thies JE (2008) Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol Biochem 40(2):475–486

    CAS  Google Scholar 

  • Loreau M, Downing A, Emmerson M, Gonzalez A, Hughes J, Inchausti P, Joshi J, Norberg J, Sala O (2002) A new look at the relationship between diversity and stability. In: Naeem S (ed) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford

    Google Scholar 

  • Lu YH, Abraham WR, Conrad R (2007) Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environ Microbiol 9(2):474–481

    CAS  PubMed  Google Scholar 

  • Lu H, Wu W, Chen Y, Wang H, Devare M, Thies JE (2010a) Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field. J Soils Sed 10(8):1598–1605. doi:10.1007/s11368-010-0264-9

    Google Scholar 

  • Lu H, Wu W, Chen Y, Zhang X, Devare M, Thies JE (2010b) Decomposition of Bt transgenic rice residues and response of soil microbial community in rapeseed-rice cropping system. Plant Soil 336(1–2):279–290. doi:10.1007/s11104-010-0476-1

    CAS  Google Scholar 

  • Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32(3):241–247. doi:10.1111/j.1574-6941.2000.tb00717.x

    CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129(1):1–10

    CAS  Google Scholar 

  • Milling A, Smalla K, Maidl FX, Schloter M, Munch JC (2004) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266(1–2):23–39

    CAS  Google Scholar 

  • Naef A, Defago G (2006) Population structure of plant-pathogenic Fusarium species in overwintered stalk residues from Bt-transformed and non-transformed maize crops. Eur J Plant Pathol 116(2):129–143

    CAS  Google Scholar 

  • Nielsen UN, Ayres E, Wall DH, Bardgett RD (2011) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. Eur J Soil Sci 62(1):105–116. doi:10.1111/j.1365-2389.2010.01314.x

    CAS  Google Scholar 

  • O’Callaghan M, Gerard EM, Bell NL, Waipara NW, Aalders LT, David BB, Conner AJ (2008) Microbial and nematode communities associated with potatoes genetically modified to express the antimicrobial peptide magainin and unmodified potato cultivars. Soil Biol Biochem 40:1446–1459. doi:10.1016/j.soilbio.2007.12.028

    Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42(5):724–738. doi:10.1016/j.soilbio.2010.01.006

    CAS  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15(4):369–372

    CAS  PubMed  Google Scholar 

  • Oliveira AP, Pampulha ME, Bennett JP (2008) A two-year field study with transgenic Bacillus thuringiensis maize: effects on soil microorganisms. Sci Total Environ 405(1–3):351–357. doi:10.1016/j.scitotenv.2008.05.046

    CAS  PubMed  Google Scholar 

  • Powell JR, Gulden RH, Hart MM, Campbell RG, Levy-Booth DJ, Dunfield KE, Pauls KP, Swanton CJ, Trevors JT, Klironomos JN (2007) Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl Environ Microbiol 73(13):4365–4367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powell JR, Levy-Booth DJ, Robert HG, Wendy LA, Rachel GC, Kari ED, Allan SH, Miranda MH, Sylvain L, Robert EN, Pauls KP, Peter HS, Clarence JS, Jack TT, John NK (2009) Effects of genetically modified, herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition. J Appl Ecol 46(2):388–396

    CAS  Google Scholar 

  • Prosser JI (2012) Ecosystem processes and interactions in a morass of diversity. FEMS Microbiol Ecol 81(3):507–519. doi:10.1111/j.1574-6941.2012.01435.x

    CAS  PubMed  Google Scholar 

  • Raaijmakers J, Paulitz T, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403(6770):646–649

    CAS  PubMed  Google Scholar 

  • Rangel-Castro JI, Killham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM, Ineson P, Meharg A, Prosser JI (2005) Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol 7(6):828–838

    CAS  PubMed  Google Scholar 

  • Rasche F, Lueders T, Schloter M, Schaefer S, Buegger F, Gattinger A, Hood-Nowotny RC, Sessitsch A (2009) DNA-based stable isotope probing enables the identification of active bacterial endophytes in potatoes. New Phytol 181(4):802–807. doi:10.1111/j.1469-8137.2008.02744.x

    CAS  PubMed  Google Scholar 

  • Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat Biotechnol 15(4):363–368

    CAS  PubMed  Google Scholar 

  • Saxena D, Stotzky G (2001a) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem 33(9):1225–1230. doi:10.1016/s0038-0717(01)00027-x

    CAS  Google Scholar 

  • Saxena D, Stotzky G (2001b) Bt corn has a higher lignin content than non-Bt corn. Am J Bot 88(9):1704–1706. doi:10.2307/3558416

    CAS  PubMed  Google Scholar 

  • Seppänen SK, Pasonen HL, Vauramo S, Vahala J, Toikka M, Kilpeläinen I, Setälä H, Teeri TH, Timonen S, Pappinen A (2007) Decomposition of the leaf litter and mycorrhiza forming ability of silver birch with a genetically modified lignin biosynthesis pathway. Appl Soil Ecol 36(2–3):100–106

    Google Scholar 

  • Setälä H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139(1):98–107

    PubMed  Google Scholar 

  • Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36(2–3):147–155. doi:10.1016/j.apsoil.2007.01.004

    Google Scholar 

  • Tan FX, Wang JW, Feng YJ, Chi GL, Kong HL, Qiu HF, Wei SL (2010) Bt corn plants and their straw have no apparent impact on soil microbial communities. Plant Soil 329(1–2):349–364. doi:10.1007/s11104-009-0163-2

    CAS  Google Scholar 

  • Tan F, Wang J, Chen Z, Feng Y, Chi G, Rehman SU (2011) Assessment of the arbuscular mycorrhizal fungal community in roots and rhizosphere soils of Bt corn and their non-Bt isolines. Soil Biol Biochem 43(12):2473–2479. doi:10.1016/j.soilbio.2011.08.014

    CAS  Google Scholar 

  • Tilston EL, Halpin C, Hopkins DW (2013) Simultaneous down-regulation of enzymes in the phenylpropanoid pathway of plants has aggregated effects on rhizosphere microbial communities. Biol Fertility Soils:1–9. doi:10.1007/s00374-013-0862-y

  • Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2004) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266(1–2):69–75

    CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396(6706):69–72

    Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310. doi:10.1111/j.1461-0248.2007.01139.x

    PubMed  Google Scholar 

  • van der Wal A, Geydan TD, Kuyper TW, de Boer W (2013) A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev 37(4):477–494

    PubMed  Google Scholar 

  • Verbruggen E, Kiers TE (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3(5–6):547–560. doi:10.1111/j.1752-4571.2010.00145.x

    PubMed Central  Google Scholar 

  • Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186(4):968–979

    CAS  PubMed  Google Scholar 

  • Verbruggen E, Kuramae EE, Hillekens R, de Hollander M, Kiers ET, Röling WFM, Kowalchuk GA, van der Heijden MGA (2012) Testing potential effects of maize expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt Maize) on mycorrhizal fungal communities via DNA- and RNA-based pyrosequencing and molecular fingerprinting. Appl Environ Microbiol 78(20):7384–7392. doi:10.1128/aem.01372-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang GH, Xu YX, Jin J, Liu JD, Zhang QY, Liu XB (2009) Effect of soil type and soybean genotype on fungal community in soybean rhizosphere during reproductive growth stages. Plant Soil 317(1–2):135–144. doi:10.1007/s11104-008-9794-y

    CAS  Google Scholar 

  • Wang Y, Xu J, Shen J, Luo Y, Scheu S, Ke X (2010) Tillage, residue burning and crop rotation alter soil fungal community and water-stable aggregation in arable fields. Soil Till Res 107(2):71–79. doi:10.1016/j.still.2010.02.008

    Google Scholar 

  • Weaver MA, Krutz LJ, Zablotowicz RM, Reddy KN (2007) Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil. Pest Manage Sci 63(4):388–393. doi:10.1002/ps.1351

    CAS  Google Scholar 

  • Wei XD, Zou HL, Chu LM, Liao B, Ye CM, Lan CY (2006) Field released transgenic papaya affects microbial communities and enzyme activities in soil. Plant Soil 285(1–2):347–358

    CAS  Google Scholar 

  • Weinert N, Meincke R, Gottwald C, Heuer H, Gomes NCM, Schloter M, Berg G, Smalla K (2009) Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Appl Environ Microbiol 75(12):3859–3865. doi:10.1128/aem.00414-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) Biotechnology and ecology — the ecological risks and benefits of genetically engineered plants. Science 290(5499):2088–2093

    CAS  PubMed  Google Scholar 

  • Wrobel-Kwiatkowska M, Turnau K, Goralska K, Anielska T, Szopa J (2012) Effects of genetic modifications to flax (Linum usitatissimum) on arbuscular mycorrhiza and plant performance. Mycorrhiza 22(7):493–499. doi:10.1007/s00572-011-0427-6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu WX, Ye QF, Min H (2004) Effect of straws from Bt-transgenic rice on selected biological activities in water-flooded soil. Eur J Soil Biol 40(1):15–22

    Google Scholar 

  • Wu WX, Liu W, Lu HH, Chen YX, Devare M, Thies J (2009) Use of C-13 labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. FEMS Microbiol Ecol 67(1):93–102. doi:10.1111/j.1574-6941.2008.00599.x

    CAS  PubMed  Google Scholar 

  • Xue K, Luo HF, Qi HY, Zhang HX (2005) Changes in soil microbial community structure associated with two types of genetically engineered plants analyzing by PLFA. J Environ Sci (China) 17(1):130–134

    CAS  Google Scholar 

  • Xue K, Serohijos RC, Devare M, Thies JE (2011) Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field. Appl Environ Microbiol 77(3):839–846. doi:10.1128/aem.01954-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zurbrügg C, Hoenemann L, Meissle M, Romeis J, Nentwig W (2010) Decomposition dynamics and structural plant components of genetically modified Bt maize leaves do not differ from leaves of conventional hybrids. Transgenic Res 19(2):257–267. doi:10.1007/s11248-009-9304-x

    PubMed  Google Scholar 

  • Zwahlen C, Hilbeck A, Nentwig W (2007) Field decomposition of transgenic Bt maize residue and the impact on non-target soil invertebrates. Plant Soil 300(1–2):245–257

    CAS  Google Scholar 

Download references

Acknowledgments

This review was financed by ERGO grant number 838.06.052 of the Netherlands Organization for Scientific Research. We thank anonymous reviewers for their insightful comments that greatly improved the manuscript. This is publication 5563 of the Netherlands Institute of Ecology (NIOO-KNAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Hannula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannula, S.E., de Boer, W. & van Veen, J.A. Do genetic modifications in crops affect soil fungi? a review. Biol Fertil Soils 50, 433–446 (2014). https://doi.org/10.1007/s00374-014-0895-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0895-x

Keywords

Navigation