Skip to main content
Log in

Combined effect of organic acids and flavonoids on the mobilization of major and trace elements from soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Combinations of different molecules usually co-exuded by plant roots in soil can significantly affect the mobilization of mineral elements from soil. The flavonoids rutin and quercetin appeared to be highly efficient in Fe and Mn mobilization from soil, being rutin about 25 times more effective than citrate in extracting Fe from an alkaline calcareous soil, and 15 times in mobilizing Mn from a slight acidic agricultural soil. Quercetin was particularly effective in mobilizing Mn from the acidic soil and 50 times more efficient than citrate. A significant synergistic effect was detected when either quercetin or rutin was combined with citrate, extracting, respectively, 1.7 and 1.5 times more Mn than what is expected by a simple combination of the two. Sorption processes on soil particles were more relevant for flavonoids than for organic acids for which microbial degradation often prevails, with the only exception of oxalate. Citrate was usually the most efficient organic acid in mobilizing major and trace elements from soil even if oxalate was a better extractant for Cu, Zn, and Ni from the alkaline soil. In the acid soil, a synergistic effect among organic acids was observed only for Mn while in alkaline soil it was observed for Si. The mechanism by which Fe is extracted by rutin in the alkaline soil is a reductive one, with one molecule of rutin being capable of mobilizing two atoms of Fe. Also for Mn in the acid soil, quercetin and rutin solubilize this element by a reductive process. However, when quercetin and rutin are combined with citrate, a complex-forming dissolution mechanism also occurs which increases the mobilization of Mn over the expected rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alef K, Nannipieri P (1998) Cellulase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, London, pp 345–349

    Google Scholar 

  • Cesco S, Rombolà AD, Tagliavini M, Varanini Z, Pinton R (2006) Phytosiderophores released by graminaceous species promote 59Fe-uptake in citrus. Plant Soil 287:223–233

    Article  CAS  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L, Renella G, Landi L, Nannipieri P (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48:123–149

    Article  CAS  Google Scholar 

  • Cheah SF, Kraemer SM, Cervini-Silva J, Sposito G (2003) Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chem Geol 198:63–75

    Article  CAS  Google Scholar 

  • Colombini M, Fuoco R (1983) Determination of manganese at ng/ml levels in natural waters by differential pulse polarography. Talanta 30:901–905

    Article  CAS  PubMed  Google Scholar 

  • Colucci J, Montalvo V, Hernandez R, Poullet C (1999) Electochemical oxidation potentials of photocatalyst reducing agents. Electrochim Acta 44:2507–2514

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators on mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • De Maagd P, Sinnige T (1998) Sorption coefficients of polycyclic aromatic hydrocarbons for two lake sediments: influence of the bactericide sodium azide. Environ Toxicol Chem 17:1899–1907

    Article  Google Scholar 

  • Dessureault-Rompré J, Nowack B, Schulin R, Luster J (2007) Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L. Plant Soil 301:123–134

    Article  Google Scholar 

  • Duckworth OW, Sposito G (2007) Siderophore-promoted dissolution of synthetic and biogenic layer type Mn oxides. Chem Geol 242:500–511

    Article  Google Scholar 

  • El-Baz FK, Mohamed AA, Aboul-Enein AM, Salama ZA (2004) Alteration in root exudates level during Fe-deficiency in two cucumber cultivars. Int J Agric Biol 6:45–48

    CAS  Google Scholar 

  • Gallet C, Keller C (1999) Phenolic composition of soil solutions: comparative study of lysimeter and centrifuge waters. Soil Biol Biochem 31:1151–1160

    Article  CAS  Google Scholar 

  • Gerke J, Römer W, Jungk A (1994) The excretion of citric and malic acid by proteoid roots of Lupinus albus L.: effects on solubility of phosphate, iron and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol. Z Pflanzenernaehr Bodenkd 157:289–294

    Article  CAS  Google Scholar 

  • Gerke J, Beissner L, Römer W (2000) The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters. Plant Nutr Soil Sci 163:207–212

    Article  CAS  Google Scholar 

  • Graham TL (1991) Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol 95:594–603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrington JM, Parker DL, Bargar JR, Jarzecki AA, Tebo BM, Sposito G, Duckworth OW (2012) Structural dependence of Mn complexation by siderophores: donor group dependence on complex stability and reactivity. Geochim Cosmochim Acta 88:106–119

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Vitousek P (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  PubMed  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. Plant Soil 113:161–165

    Article  CAS  Google Scholar 

  • Hope CFA, Burns RG (1987) Activity, origins and location of cellulases in a silt loam soil. Biol Fertil Soils 5:164–170

    Article  CAS  Google Scholar 

  • Hughes M, Donnelly C, Crozier A, Wheeler CT (1999) Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Can J Bot 77:1311–1315

    CAS  Google Scholar 

  • Indorante SJ, Follmer LR, Hammer RD, Koenig PG (1990) Particle-size analysis by a modified pipette procedure. Soil Sci Soc Am J 54:560–563

    Article  Google Scholar 

  • Isobe K, Tateishi A, Nomura K, Inoue H, Tsuboki Y (2001) Flavonoids in the extract and exudate of the roots of leguminous crops. Plant Prod Sci 4:278–279

    Article  CAS  Google Scholar 

  • Jeffrey GH, Bassett J, Mendham J, Denney RC (1989) Vogel's textbook of quantitative chemical analysis, 5th edn. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol 144:278–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Brassington D (1998) Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur J Soil Sci 49:447–455

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Jones DL, Darah PR, Kochian LV (1996) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180:57–66

    Article  CAS  Google Scholar 

  • Jones DL, Eldhuset T, de Wit HA, Swenson B (2001) Aluminium effects on organic acid mineralization in a Norway spruce forest soil. Soil Biol Biochem 33:1259–1267

    Article  CAS  Google Scholar 

  • Kalinova J, Vrchotova N, Triska J (2007) Exudation of allelopathic substances in buckwheat (Fagopyrum esculentum Moench). J Agric Food Chem 55:6453–6459

    Article  CAS  PubMed  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  CAS  PubMed  Google Scholar 

  • Klewicki JK, Morgan JJ (1998) Kinetic behavior of Mn(III) complexes of pyrophosphate, EDTA, and citrate. Environ Sci Technol 32:2916–2922

    Article  CAS  Google Scholar 

  • Kraemer S, Crowley D, Kretzschmar R (2006) Geochemical aspects of phytosiderophore‐promoted iron acquisition by plants. Adv Agron 91:1–46

    Article  CAS  Google Scholar 

  • Kuiters AT (1990) Role of phenolic substances from decomposing forest litter in plant–soil interactions. Acta Bot Neerl 39:329–348

    Article  CAS  Google Scholar 

  • Lagrange H, Jay-Allgmand C, Lapeyrie F (2001) Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol 149:349–355

    Article  CAS  Google Scholar 

  • Larson AC, Von Dreele RB (2000) General Structure Analysis System (GSAG). Report LAUR 86-748, Los Alamos National Laboratory

  • Metrohm Application Bulletin AB 123/3e. http://www.metrohm.com/com/Applications/literature/Application_Bulletins.html?identifier=AB-123&language=en&name=AB-123. Accessed 27 November 2014

  • Mimmo T, Del Buono D, Terzano R, Tomasi N, Vigani G, Crecchio C, Pinton R, Zocchi G, Cesco S (2014) Rhizospheric organic compounds in the soil-microorganism-plant system: their role in iron availability. Eur J Soil Sci 65:629–642

    Article  CAS  Google Scholar 

  • Morgan JJ (2000) Manganese in natural waters and Earth’s crust: its availability to organisms. Met Ions Biol Syst 37:1–34

    CAS  PubMed  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorous deficiency during proteoid root development in white lupin. Planta 208:373–382

    Article  CAS  Google Scholar 

  • Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Römheld V, Martinoia E (2000) Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann Bot 85:909–920

    Article  CAS  Google Scholar 

  • Nilsson MC, Högberg P, Zackrisson O, Fengyou W (1993) Allelopathic effects of Empetrum hermaphroditum on development and nitrogen uptake by roots and mycorrhizas of Pinus sylvestris. Can J Bot 71:620–628

    Article  Google Scholar 

  • Oburger E, Kirk GJD, Wenzel WW, Puschenreiter M, Jones DL (2009) Interactive effects of organic acids in the rhizosphere. Soil Biol Biochem 41:449–457

    Article  CAS  Google Scholar 

  • Olsen RA, Bennett JH, Blume D, Brown JC (1981) Chemical aspects of the Fe stress response mechanism in tomatoes. J Plant Nutr 3:905–921

    Article  CAS  Google Scholar 

  • Reichard PU, Kraemer SM, Frazier SW, Kretzschmar R (2005) Goethite dissolution in the presence of phytosiderophores: rates, mechanisms, and the synergistic effect of oxalate. Plant Soil 276:115–132

    Article  CAS  Google Scholar 

  • Reichard PU, Kretzschmar R, Kraemer SM (2007) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim Cosmochim Acta 71:5635–5650

    Article  CAS  Google Scholar 

  • Rodríguez-Celma J, Lin WD, Fu GM, Abadía J, López-Millán AF, Schmidt W (2013) Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol 162:1473–1485

    Article  PubMed Central  PubMed  Google Scholar 

  • Römheld V, Marschner H (1986) Mobilization of iron in the rhizosphere of different plant species. Adv Plant Nutr 2:155–204

    Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Saal LB, Duckworth OW (2010) Synergistic dissolution of manganese oxides as promoted by siderophores and small organic acids. Soil Sci Soc Am J 74:2021–2031

    Article  CAS  Google Scholar 

  • Schmid NB, Giehl RFH, Döll S, Mock HP, Strehmel N, Scheel D, Kong X, Hider RC, von Wirén N (2014) Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol 164:160–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt H, Gunther C, Weber M, Sporlein C, Loscher S, Bottcher C, Schobert R, Clemens S (2014) Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS One. doi:10.1371/journal.pone.0102444

    Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  CAS  PubMed  Google Scholar 

  • Sparks DL (ed) (1996) Methods of soil analysis Part 3—Chemical methods, SSSA Book Series No 5. Soil Science Society of America and American Society of Agronomy, Madison

    Google Scholar 

  • Spiro RG (1966) Analysis of sugars found in glycoproteins. In: Neufeld EF, Ginsberg V (eds) Methods in enzimology, vol 8. Academic Press, London, pp 3–26

    Google Scholar 

  • Steele HL, Werner D, Cooper JE (1999) Flavonoids in seed and root exudates of Lotus pedunculatus and their biotransformation by Mesorhizobium loti. Physiol Plant 107:251–258

    Article  CAS  Google Scholar 

  • Stone AT (1983) The reduction and dissolution of Mn(III) and Mn(IV) oxides by organics. PhD Thesis, California Institute of Technology

  • Ström L, Owen AG, Godbold DL, Jones DL (2005) Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol Biochem 37:2046–2054

    Article  Google Scholar 

  • Terzano R, Cesco S, Mimmo T (2015) Dynamics, thermodynamics and kinetics of exudates: crucial issues in understanding rhizosphere processes. Plant Soil 386:399–406

    Article  CAS  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical interface for GSAS. J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  • Tomasi N, Weisskopf L, Renella G, Landi L, Pinton R, Varanini Z, Nannipieri P, Torrent J, Martinoia E, Cesco S (2008) Flavonoids of white lupin roots participate in phosphorus mobilization from soil. Soil Biol Biochem 40:1971–1974

    Article  CAS  Google Scholar 

  • Treeby M, Uren N (1993) Iron deficiency stress responses amongst citrus rootstocks. J Plant Nutr Soil Sci 156:75–81

    CAS  Google Scholar 

  • van Hees PAW, Jones DL, Godbold DL (2002) Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils. Soil Biol Biochem 34:1261–1272

    Article  Google Scholar 

  • Wang Y, Stone AT (2006) The citric acid–MnIII, IVO2(birnessite) reaction. Electron transfer, complex formation, and autocatalytic feedback. Geochim Cosmochim Acta 70:4463–4476

    Article  CAS  Google Scholar 

  • Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E (2006) Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage. New Phytol 171:657–668

    CAS  PubMed  Google Scholar 

  • Zare HR, Namazian M, Nasirizadeh N (2005) Electrochemical behavior of quercetin: experimental and theoretical studies. J Electroanal Chem 584:77–83

    Article  CAS  Google Scholar 

  • Zhong L, Yang J, Liu L, Li X (2013) Desferrioxamine-B promoted dissolution of an Oxisol and the effect of low-molecular-weight organic acids. Biol Fert Soils 49:1077–1083

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by grants from Italian MIUR (FIRB-Programme “Futuro in Ricerca”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Terzano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terzano, R., Cuccovillo, G., Gattullo, C.E. et al. Combined effect of organic acids and flavonoids on the mobilization of major and trace elements from soil. Biol Fertil Soils 51, 685–695 (2015). https://doi.org/10.1007/s00374-015-1009-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1009-0

Keywords

Navigation