Skip to main content
Log in

Incorporation of urea-derived 13C into microbial communities in four different agriculture soils

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate changes in the composition of the soil microbial community brought about by urea application and differences in the incorporation of urea-derived C into the soil phospholipid fatty acid (PLFA) pool at differing soil pH. We selected four soils which ranged in pH from 3.9 to 7.8. 13C-labeled urea was applied at two concentrations 100 and 200 mg N kg−1 which represents commonly used and high levels of application. Significant hydrolysis of applied urea occurred within 2 h; less than 2 % of urea-C was retained in the soil with one exception, the fluvo-aquic soil at pH 7.8 amended with 200 mg kg−1 urea-N 3 days after urea application. According to principal component analysis (PCA), the effect of urea and incubation time on microbial community composition was far weaker than differences between the four soils due to their large differences in basic properties; the scores of PC2 were significantly correlated with pH values. The incorporation of 13C-urea to PLFAs increased with soil pH; this may be related to increases in the speciation of inorganic C into bicarbonate.13C label was primarily incorporated into 16:1ω5c, 16:0, and cy19:0 in red soil, pH 3.9; and into 16:1ω7c, 16:0, and 16:1ω5c in fluvo-aquic soil, pH 7.8. A wider range of PLFAs became labeled in the two paddy soils at pH 5.2 and 6.7. This suggests that the profile of PLFAs labeled from the application of 13C-urea may be affected by redox potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aciego Pietri J, Brookes P (2009) Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil. Soil Biol Biochem 41:1396–1405

    Article  CAS  Google Scholar 

  • Alonso-Sáez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL, Lovejoy C, Tremblay J-É, Potvin M, Heinrich F (2012) Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci U S A 109:17989–17994

    Article  PubMed Central  PubMed  Google Scholar 

  • Arao T (1999) In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into soil phospholipid fatty acids from 13C acetate. Soil Biol Biochem 31:1015–1020

    Article  CAS  Google Scholar 

  • Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  Google Scholar 

  • Balasooriya WK, Huygens D, Denef K, Roobroeck D, Verhoest NE, Boeckx P (2013) Temporal variation of rhizodeposit-C assimilating microbial communities in a natural wetland. Biol Fert Soils 49:333–341

    Article  CAS  Google Scholar 

  • Bastida F, Torres IF, Hernández T, Bombach P, Richnow HH, García C (2013) Can the labile carbon contribute to carbon immobilization in semiarid soils? Priming effects and microbial community dynamics. Soil Biol Biochem 57:892–902

    Article  CAS  Google Scholar 

  • Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    Article  CAS  PubMed  Google Scholar 

  • Bernoux M, Cerri CC, Neill C, de Moraes JFL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43–58

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Brüggemann N, Gessler A, Kayler Z, Keel S, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschütz J (2011) Carbon allocation and carbon isotope fluxes in the plant–soil–atmosphere continuum: a review. Biogeosciences 8:3457–3489

    Article  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • DeAngelis KM, Silver WL, Thompson AW, Firestone MK (2010) Microbial communities acclimate to recurring changes in soil redox potential status. Environ Microbiol 12:3137–3149

    Article  CAS  PubMed  Google Scholar 

  • Denef K, Bubenheim H, Lenhart K, Vermeulen J, Van Cleemput O, Boeckx P, Müller C (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779

    Article  CAS  Google Scholar 

  • Denef K, Roobroeck D, Manimel Wadu MCW, Lootens P, Boeckx P (2009) Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biol Biochem 41:144–153

    Article  CAS  Google Scholar 

  • Dong L, Córdova-Kreylos AL, Yang J, Yuan H, Scow KM (2009) Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification. Soil Biol Biochem 41:1612–1621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dungait JAJ, Kemmitt SJ, Michallon L, Guo S, Wen Q, Brookes PC, Evershed RP (2011) Variable responses of the soil microbial biomass to trace concentrations of 13C-labelled glucose, using 13C-PLFA analysis. Eur J Soil Sci 62:117–126

    Article  CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed Central  PubMed  Google Scholar 

  • Ge C, Xue D, Yao H (2010) Microbial biomass, community diversity, and enzyme activities in response to urea application in tea orchard soils. Commun Soil Sci Plan 41:797–810

    Article  CAS  Google Scholar 

  • Gehron MJ, David CW (1983) Sensitive assay of phospholipid glycerol in environmental samples. J Microbiol Meth 1:23–32

    Article  CAS  Google Scholar 

  • Geyer R, Peacock A, Miltner A, Richnow HH, White D, Sublette K, Kästner M (2005) In situ assessment of biodegradation potential using biotraps amended with 13C-labeled benzene or toluene. Environ Sci Technol 39:4983–4989

    Article  CAS  PubMed  Google Scholar 

  • Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:520–536

    Article  CAS  Google Scholar 

  • Hamer U, Potthast K, Makeschin F (2009) Urea fertilisation affected soil organic matter dynamics and microbial community structure in pasture soils of Southern Ecuador. Appl Soil Ecol 43:226–233

    Article  Google Scholar 

  • Heffer P, Prud’homme M (2011) Fertilizer outlook 2011–2015. International Fertilizer Industry Association-IFA, Paris. Available at: http://www.fertilizer.org/ifa/HomePage/LIBRARY/Conference-papers/Annual-Conferences/2011-IFA-Annual-Conference. Accessed on 12 March 2011

  • Kimura M, Asakawa S (2006) Comparison of community structures of microbiota at main habitats in rice field ecosystems based on phospholipid fatty acid analysis. Biol Fertil Soils 43:20–29

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  • Koops H-P, Purkhold U, Pommerening-Röser A, Timmermann G, Wagner M (2006) The lithoautotrophic ammonia-oxidizing bacteria. Prokaryotes 5:778–811

    Article  Google Scholar 

  • Koper TE, El-Sheikh AF, Norton JM, Klotz MG (2004) Urease-encoding genes in ammonia-oxidizing bacteria. Appl Environ Microbiol 70:2342–2348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Ladygina N, Hedlund K (2010) Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol Biochem 42:162–168

    Article  CAS  Google Scholar 

  • Levicnik-Hofferle S, Nicol GW, Ausec L, Mandic-Mulec I, Prosser JI (2012) Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol Ecol 80:114–123

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Han W, Zhang J, Wu Y, Wang B, Lin X, Zhu J, Cai Z, Jia Z (2012) Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J 6:1978–1984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu Y, Murase J, Watanabe A, Sugimoto A, Kimura M (2004) Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiol Ecol 48:179–186

    Article  CAS  PubMed  Google Scholar 

  • Mobley HL, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Mol Biol R 59:451–480

    CAS  Google Scholar 

  • Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murase J, Matsui Y, Katoh M, Sugimoto A, Kimura M (2006) Incorporation of 13C-labeled rice-straw-derived carbon into microbial communities in submerged rice field soil and percolating water. Soil Biol Biochem 38:3483–3491

    Article  CAS  Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli M, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  • Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10:2966–2978

    Article  CAS  PubMed  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Petersen SO, Roslev P, Bol R (2004a) Dynamics of a pasture soil microbial community after deposition of cattle urine amended with [13C]urea. Appl Environ Microbiol 70:6363–6369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen SO, Stamatiadis S, Christofides C (2004b) Short-term nitrous oxide emissions from pasture soil as influenced by urea level and soil nitrate. Plant Soil 267:117–127

    Article  CAS  Google Scholar 

  • Pett-Ridge J, Firestone M (2005) Redox fluctuation structures microbial communities in a wet tropical soil. Appl Environ Microbiol 71:6998–7007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pett-Ridge J, Silver WL, Firestone MK (2006) Redox fluctuations frame microbial community impacts on N-cycling rates in a humid tropical forest soil. Biogeochemistry 81:95–110

    Article  CAS  Google Scholar 

  • Pratscher J, Dumont MG, Conrad R (2011) Ammonia oxidation coupled to CO2 fixation by archaea and bacteria in an agricultural soil. Proc Natl Acad Sci U S A 108:4170–4175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2010) The microbial PLFA composition as affected by pH in an arable soil. Soil Biol Biochem 42:516–520

    Article  CAS  Google Scholar 

  • Serrano-Silva N, Luna-Guido M, Fernández-Luqueño F, Marsch R, Dendooven L (2011) Emission of greenhouse gases from an agricultural soil amended with urea: a laboratory study. Appl Soil Ecol 47:92–97

    Article  Google Scholar 

  • Schouten S, Hopmans EC, Sinninghe Damsté JS (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem 54:19–61

    Article  CAS  Google Scholar 

  • Soares JR, Cantarella H, Menegale MLC (2012) Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol Biochem 52:82–89

    Article  CAS  Google Scholar 

  • Tavi NM, Martikainen PJ, Lokko K, Kontro M, Wild B, Richter A, Biasi C (2013) Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using 13CO2 pulse-chase labelling combined with 13C-PLFA profiling. Soil Biol Biochem 58:207–215

    Article  CAS  Google Scholar 

  • Thornton B, Zhang Z, Mayes RW, Hogberg MN, Midwood AJ (2011) Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance? Rapid Commun Mass Sp: RCM 25:2433–2438

    Article  CAS  Google Scholar 

  • Uhlík O, Jecná K, Leigh MB, Macková M, Macek T (2009) DNA-based stable isotope probing: a link between community structure and function. Sci Total Environ 407:3611–3619

    Article  PubMed  Google Scholar 

  • Veuger B, Middelburg J (2007) Incorporation of nitrogen from amino acids and urea by benthic microbes: role of bacteria versus algae and coupled incorporation of carbon. Aquat Microb Ecol 48:35–46

    Article  Google Scholar 

  • White D, Davis W, Nickels J, King J, Bobbie R (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62

    Article  Google Scholar 

  • Witte CP (2011) Urea metabolism in plants. Plant Sci 180:431–438

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77:4618–4625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao H, Thornton B, Paterson E (2012) Incorporation of 13C-labelled rice rhizodeposition carbon into soil microbial communities under different water status. Soil Biol Biochem 53:72–77

    Article  CAS  Google Scholar 

  • Yao H, Campbell CD, Chapman SJ, Freitag TE, Nicol GW, Singh BK (2013) Multi-factorial drivers of ammonia oxidizer communities: evidence from a national soil survey. Environ Microb 15:2545–2556

    Article  CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fert Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zhalnina K, de Quadros PD, Camargo FA, Triplett EW (2012) Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol 3:1–9

    Google Scholar 

  • Zhang H, Ding W, Yu H, He X (2013) Carbon uptake by a microbial community during 30-day treatment with 13C-glucose of a sandy loam soil fertilized for 20 years with NPK or compost as determined by a GC–C–IRMS analysis of phospholipid fatty acids. Soil Biol Biochem 57:228–236

    Article  CAS  Google Scholar 

  • Zhang L-M, Offre PR, He J-Z, Verhamme DT, Nicol GW, Prosser JI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci U S A 107:17240–17245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant no. 41090283 and 31071869). The James Hutton Institute receives funding from the Scottish Government. We thank Prof. Yongguan Zhu for providing paddy soils and fluvo-aquic soil and Dr. Shen Yu for providing PLFA extraction equipment. We thank the anonymous reviewers whose comments helped improve the manuscript from the original version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiying Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Thornton, B. & Yao, H. Incorporation of urea-derived 13C into microbial communities in four different agriculture soils. Biol Fertil Soils 50, 603–612 (2014). https://doi.org/10.1007/s00374-013-0881-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0881-8

Keywords

Navigation