Skip to main content

Advertisement

Log in

Biochemical properties in managed grassland soils in a temperate humid zone: modifications of soil quality as a consequence of intensive grassland use

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Although soil biochemical properties are considered to be good indicators of changes in soil quality, few studies have been made of the changes in biochemical properties brought about by anthropogenic disturbance of grassland ecosystems. In the present study, several biochemical properties were analysed in 31 grassland soils subjected to a high level of management, and the values obtained were compared with known values corresponding to native grasslands from the same region (Galicia, NW Spain). The 31 managed grasslands were divided into two groups (re-sown grasslands and improved grasslands) according to their management and past land use. The biochemical properties studied were: labile carbon, microbial biomass carbon, microbial respiration, metabolic quotient, net nitrogen mineralisation and the activities of dehydrogenase, catalase, phosphodiesterase, phosphomonoesterase, casein hydrolysing proteases, benzoyl arginamide (BAA)-hydrolysing proteases, urease, cellulase, ß-glucosidase, invertase and arylsulphatase. Managed grasslands exhibited lower values of soil biochemical properties than native grasslands. Three biochemical equilibrium equations were used to compare soil quality in managed and native grasslands. One of the equations did not show any significant difference between the groups of grassland soils considered. In contrast, two of the equations showed similar soil quality for improved and native grasslands, while re-sown grasslands exhibited a loss of soil quality when compared to native grassland soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banerjee MR, Burton DL, McCaughey WP, Grant CA (2000) Influence of pasture management on soil biological quality. J Range Manage 53:127–133. doi:10.2307/4003403

    Article  Google Scholar 

  • Bastida F, Zsolnay A, Hernández T, García C (2008) Past, present and future of soil quality indices: a biological perspective. Geoderma 147:159–171. doi:10.1016/j.geoderma.2008.08.007

    Article  CAS  Google Scholar 

  • Bremner JM (1965) Inorganic forms of nitrogen. In: Black CA, Evans DD, White JL, Ensminger LE, Clark FE (eds) Methods of soil analysis, part 2, microbiological and biochemical properties. ASA-SSSA, Madison, WI, pp 1179–1237

    Google Scholar 

  • Bowman RA, Cole CV (1978) An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Sci 125:49–54

    CAS  Google Scholar 

  • Bowman MG, Tabatabai MA (1978) Phosphodiesterase activity of soils. Soil Sci Soc Am J 42:284–290

    Google Scholar 

  • Camiña F, Trasar-Cepeda C, Gil-Sotres F, Leirós MC (1998) Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil Biol Biochem 30:1005–1011. doi:10.1016/S0038-0717(98)00010-8

    Article  Google Scholar 

  • Carter MR, Gregorich EG, Angers DA, Beare MH, Sparling GP, Wardle DA, Voroney RP (1999) Interpretation of microbial biomass measurements for soil quality assessment in humid temperate regions. Can J Soil Sci 79:507–520

    Google Scholar 

  • Dick RP (1992) A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric Ecosyst Environ 40:25–36. doi:10.1016/0167-8809(92)90081-L

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606. doi:10.1016/0038-0717(88)90141-1

    Article  CAS  Google Scholar 

  • Fraga MI, Calvo LR, Baleato JC (2002) Comparative study of floristic diversity in sown grasslands and permanent pastures from Galicia (Northwest Spain). In: Fisher G, Frankow-Lindberg B (eds) Lowland grasslands of Europe: utilization and development. FAO, Rome, pp 281–283

    Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887. doi:10.1016/j.soilbio.2004.10.003

    Article  CAS  Google Scholar 

  • Gregorich EG, Greer KJ, Anderson DW, Liang BC (1998) Carbon distribution and losses: Erosion and deposition effects. Soil Tillage Res 47:291–302. doi:10.1016/S0167-1987(98)00117-2

    Article  Google Scholar 

  • Guitián F, Carballas T (1976) Técnicas de Análisis de Suelos. Santiago de Compostela, Editorial Pico Sacro.

  • Gupta VVSR, Germida JJ (1988) Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem 20:777–786. doi:10.1016/0038-0717(88)90082-X

    Article  CAS  Google Scholar 

  • Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv Agron 85:221–268. doi:10.1016/S0065-2113(04)85005-3

    Article  CAS  Google Scholar 

  • Insam H, Domsch KH (1988) Relationship between organic soil carbon and microbial biomass on chronosequences of reclamation sites. Microb Ecol 15:175–188. doi:10.1007/BF02011711

    Article  Google Scholar 

  • Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using protein and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30. doi:10.1016/0038-0717(72)90038-7

    Article  CAS  Google Scholar 

  • Leirós MC, Trasar-Cepeda C, García-Fernández F, Gil-Sotres F (1999) Defining the validity of a biochemical index of soil quality. Biol Fertil Soils 30:140–146. doi:10.1007/s003740050600

    Article  Google Scholar 

  • Lovell RD, Jarvis SC, Bardgett RD (1995) Microbial biomass and activity in long term grassland: effects of management changes. Soil Biol Biochem 27:969–975. doi:10.1016/0038-0717(94) 00241-R

    Article  CAS  Google Scholar 

  • Masto RE, Chhonkar PK, Singh D, Patra AK (2007) Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agric Ecosyst Environ 18:130–142. doi:10.1016/j.agee.2006.05.008

    Article  CAS  Google Scholar 

  • Mawdsley JL, Bardgett RD (1997) Continuous defoliation of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and associated changes in the microbial population of an upland grassland soil. Biol Fertil Soils 27:969–975

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nannipieri P, Johnson RL, Paul EA (1978) Criteria for measurement of microbial growth and activity in soil. Soil Biol Biochem 10:223–229. doi:10.1016/0038-0717(78)90100-1

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Materese E (1980) Extraction of phosphatase, urease, proteases and organic carbon from soil. Soil Sci Soc Am J 44:1011–1016

    CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Grego S (1990) Ecological significance of biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker., New York, pp 293–355

    Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soils. In RG Burns, RP Dick (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New, York, pp 1–33

    Google Scholar 

  • Nsabimana D, Haynes RJ, Wallis FM (2004) Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Appl Soil Ecol 26:81–92. doi:10.1016/j.apsoil.2003.12.005

    Article  Google Scholar 

  • Okore IK, Tijani-Eniola H, Agboola AA, Aiyelari EA (2007) Impact of land clearing methods and cropping systems on labile soil C and N pools in the humid zone Forest of Nigeria. Agric Ecosyst Environ 120:250–258. doi:10.1016/j.agee.2006.09.011

    Article  CAS  Google Scholar 

  • Paz-Ferreiro J, Trasar-Cepeda C, Leirós MC, Seoane S, Gil-Sotres F (2007) Biochemical properties of acid soils under native grassland in a temperate humid zone. NZ J Agr Res 50:537–548

    CAS  Google Scholar 

  • Puglisi E, Del Rea AAM, Rao MA, Gianfreda L (2006) Development and validation of numerical indexes integrating enzyme activities of soils. Soil Biol Biochem 38:1673–1681. doi:10.1016/j.soilbio.2005.11.021

    Article  CAS  Google Scholar 

  • Ross DJ, Speir TW, Kettles HA, Mackay AD (1995) Soil microbial biomass C and N mineralization and enzyme activities in a hill pasture: influence of season and slow-release P and S fertilizer. Soil Biol Biochem 27:1431–1443. doi:10.1016/0038-0717(95)00069-Q

    Article  CAS  Google Scholar 

  • Saá A, Trasar-Cepeda MC, Gil-Sotres F, Carballas T (1993) Changes in soil phosphorus and acid phosphatase activity immediately following forest fires. Soil Biol Biochem 25:1223–1230. doi:10.1016/0038-0717(93)90218-Z

    Article  Google Scholar 

  • Saviozzi A, Levi-Minzi R, Cardelli R, Rifaldi R (2001) A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant Soil 233:251–259. doi:10.1023/A:1010526209076

    Article  CAS  Google Scholar 

  • Schinner F, von Mersi W (1990) Xylanase-, CM-cellulase- and invertase activity in soil: an improved method. Soil Biol Biochem 22:511–515. doi:10.1016/0038-0717(90)90187-5

    Article  CAS  Google Scholar 

  • Simek M, Hopkins DW, Kalcik J, Picek T, Santruckova H, Stana J, Trávník K (1999) Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications. Biol Fertil Soils 29:300–308. doi:10.1007/s003740050556

    Article  CAS  Google Scholar 

  • Snaydon RW (1981) The ecology of grazed pastures. In: Morley FHW (ed) Grazing animals. Elsevier, Amsterdam, pp 13–31

    Google Scholar 

  • Sparling GP, Schipper L (2004) Soil quality monitoring in New Zealand: trends and issues arising from a broad-scale survey. Agric Ecosyst Environ 104:545–552. doi:10.1016/j.agee.2003.11.014

    Article  CAS  Google Scholar 

  • Stewart DPC, Metherell AK (1999) Carbon (13C) uptake and allocation in pasture plants following field pulse labelling. Plant Soil 210:61–73. doi:10.1023/A:1004668910787

    Article  CAS  Google Scholar 

  • Tabatabai MA, Bremner JM (1970) Arylsulfatase activity of soils. Soil Sci Soc Am Proc 34:225–229

    Article  CAS  Google Scholar 

  • Tan X, Chang SX, Kabzems R (2008) Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biol Fertil Soils 44:471–479. doi:10.1007/s00374-007-0229-3

    Article  Google Scholar 

  • Trasar-Cepeda C, Leirós MC, Gil-Sotres F, Seoane S (1998) Towards a biochemical index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils 26:100–106. doi:10.1007/s003740050350

    Article  CAS  Google Scholar 

  • Trasar-Cepeda C, Camiña F, Leirós MC, Gil-Sotres F (1999) An improved method to measure catalase activity in soils. Soil Biol Biochem 31:483–485. doi:10.1016/S0038-0717(98)00153-9

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass carbon. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  • Van Veen JA, Paul EA (1981) Organic carbon dynamics in grassland soils. I. Background information and computer simulation. Can J Soil Sci 61:181–186

    Google Scholar 

  • Yeates GW, Bardgett RD, Cook R, Hobbs PJ, Bowling PJ, Potter JF (1997) Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes. J Appl Ecol 34:453–471. doi:10.2307/2404890

    Article  Google Scholar 

  • Zeller V, Bardgett RD, Tappeiner U (2001) Site and management effects on soil microbial properties of subalpine meadows: a study of land abandonment along a north–south gradient in the European Alps. Soil Biol Biochem 33:639–649. doi:10.1016/S0038-0717(00)00208-X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was financed by the Spanish Ministry of Science and Technology, under Project No. BTE2001-0987. J. Paz-Ferreiro thanks the Spanish Ministry of Education for financial support (FPU programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paz-Ferreiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paz-Ferreiro, J., Trasar-Cepeda, C., Leirós, M.C. et al. Biochemical properties in managed grassland soils in a temperate humid zone: modifications of soil quality as a consequence of intensive grassland use. Biol Fertil Soils 45, 711–722 (2009). https://doi.org/10.1007/s00374-009-0382-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-009-0382-y

Keywords

Navigation