Skip to main content
Log in

The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

To investigate the effects of individual plant species on microbial community properties in soils of differing fertility, a microcosm experiment was carried out using plant species representative of the dominant flora in semi-fertile temperate grasslands of northern England. Soil microbial biomass and activity were found to be significantly greater in the more fertile, agriculturally improved soil than in the less productive unimproved meadow soil. Differences in microbial community structure were also evident between the two soils, with fungal abundance being greater in the unimproved soil type. Individual plant species effects significantly differed between the two soils. Holcus lanatus and Anthoxanthum odoratum stimulated microbial biomass in the improved soil type, but negatively affected this measure in the unimproved soil. In both soil types, herb species generally had negative effects on microbial biomass. Patterns for microbial activity were less consistent, but as with microbial biomass, A. odoratum and H. lanatus promoted respiration, whereas the herbs negatively affected this measure. All plant species grown in the improved soil increased the abundance of fatty acids synthesised by bacteria (bacterial phospholipid fatty acid analysis) relative to bare soil, but they negatively impacted on this group of fatty acids in unimproved soil. Similarly, the abundance of the fungal fatty acid 18:2ω6 was increased by all plants in the more fertile improved soil only, albeit non-significantly. Our data indicate that effects of plant species on microbial properties differ markedly in soils of differing fertility, making general predictions about how individual plants impact on soil properties difficult to make.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell, Oxford

  • Bardgett RD, McAlister E (1999) The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self regulation in temperate meadow grasslands. Biol Fertil Soils 29:282–290

    Article  Google Scholar 

  • Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321

    Article  CAS  Google Scholar 

  • Bardgett RD, Hobbs PJ, Frostegård A (1996) Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264

    Article  Google Scholar 

  • Bardgett RD, Mawdsley JL, Edwards S, Hobbs PJ, Rodwell JS, Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct Ecol 13:650–660

    Article  Google Scholar 

  • Bever JD (1994) Feedback between plants and their soil communities in an old field community. Ecology 75:1965–1977

    Google Scholar 

  • Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Chen J, Stark JM (2000) Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil. Soil Biol Biochem 32:47–57

    Article  CAS  Google Scholar 

  • Donnison LM, Griffith GS, Hedger J, Hobbs PJ, Bardgett RD (2000) Management influences on soil microbial communities and their function in botanically diverse haymeadows of northern England and Wales. Soil Biol Biochem 32:253–263

    Article  CAS  Google Scholar 

  • Federle TW (1986) Microbial distribution in soil—new techniques. In: Megusar F, Gantar M (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana, pp 493–498

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 29:59–65

    Article  Google Scholar 

  • Frostegård A, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Gransee A, Wittenmayer L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J Plant Nutr Soil Sci 163:381–385

    CAS  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    CAS  Google Scholar 

  • Groffman PM, Eagan P, Sullivan WM, Lemunyon JL (1996) Grass species and soil type effects on microbial biomass and activity. Plant Soil 183:61–67

    CAS  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  • Mackey JML, Neal AM (1993) Section 2.5. Harvesting, recording weight, area and length. In: Hendry GAF, Grime JP (eds) Methods in comparative plant ecology. Chapman and Hall, London

  • Marschner H (1997) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

  • Marschner P, Yang C-H, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Rodwell JS (1992) Grassland and montane communities. British plant communities, vol 3. Cambridge University Press, Cambridge

  • Rovira AD (1965) Plant root exudates and their influence upon soil micro-organisms. In: Baker KF, Snyder WC (eds) Ecology of soil-borne pathogens—prelude to biological control. University of California, Berkely, Calif., pp 170–186

  • Sparling GP, West AW, Feltham CW, Reynolds J (1990) Estimation of soil microbial C by a fumigation–extraction method: use on soils of high organic matter content and reassessment of the k ec-factor. Soil Biol Biochem 22:301–307

    Article  Google Scholar 

  • Tunlid A, Hoitink HAJ, Low C, White DC (1989) Characterization of bacteria that suppress Rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers. Appl Environ Microbiol 55:1368–1374

    CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    CAS  Google Scholar 

  • Van der Krift TAJ, Kuikman PJ, Möller F, Berendse F (2001) Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant Soil 228:191–200

    Article  Google Scholar 

  • Vruggink H (1976) Influence of agricultural crops on the actinomycetes flora in soil. Plant Soil 44:639–654

    Google Scholar 

  • Wardle DA, Nicholson KS (1996) Synergistic effects of grassland plant species on soil microbial biomass and activity: implications for ecosystem-level effects of enriched plant diversity. Funct Ecol 10:410–416

    Google Scholar 

  • Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86:405–420

    Article  Google Scholar 

  • Wardle DA, Bonner KI, Barker GM, Yeates GW, Nicholson KS, Bardgett RD, Watson RN, Ghani A (1999) Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol Monogr 69:535–568

    Google Scholar 

  • White DC, Davis WM, Nickels JS, King JC, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62

    Google Scholar 

  • Zeller V, Bardgett RD, Tappeiner U (2001) Site and management effects on soil microbial properties of subalpine meadows: a study of land abandonment along a north-south gradient in the European Alps. Soil Biol Biochem 33:639–649

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Juliet Frankland for allowing us to use her meadows for soil sampling. This project was supported by a BBSRC studentship to Louise Innes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Innes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innes, L., Hobbs, P.J. & Bardgett, R.D. The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol Fertil Soils 40, 7–13 (2004). https://doi.org/10.1007/s00374-004-0748-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-004-0748-0

Keywords

Navigation