Skip to main content
Log in

An intelligent framework for transmission map estimation in image dehazing using total variation regularized low-rank approximation

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The presence of haze affects a multitude of applications that require detection of image features, such as target tracking, object recognition and camera-based advanced driving assistance systems. In this paper, an optimization framework is proposed to efficiently estimate the scene transmission map which aids the dehazing process in an effective manner. In the formulated optimization model, low-rank approximation using weighted nuclear norm minimization is introduced to smoothen the coarse transmission map obtained from hazy data in order to avoid the visual artifacts in the dehazed image. Total variation regularization is employed to preserve the prominent edges and salient structural details in the transmission map. Moreover, the inclusion of \(l_1\) norm minimization helps to obtain a finer transmission map by enhancing the minute sparse structural details, thereby providing good dehazing results. The beauty of the proposed model is confined in the efficient formulation of a unified optimization model for the estimation of transmission map with fine-tuned regularization terms which is not reported until now in the direction of image dehazing. The extensive experiments prove that the proposed method surpasses the state-of-the-art methods in image dehazing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://sites.google.com/site/boyilics/website-builder/reside

  2. https://github.com/Seanforfun/GMAN_Net_Haze_Removal

References

  1. Ancuti, C., Ancuti, C.O., Timofte, R.: Ntire 2018 challenge on image dehazing: Methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 891–901 (2018)

  2. Ancuti, C.O., Ancuti, C., Hermans, C., Bekaert, P.: A fast semi-inverse approach to detect and remove the haze from a single image. In: Asian Conference on Computer Vision, pp. 501–514. Springer (2010)

  3. Baiju, P., Jayan, P.D., George, S.N.: Weighted nuclear norm and tv regularization based image deraining. In: 2018 Twenty Fourth National Conference on Communications (NCC), pp. 1–6. IEEE (2018)

  4. Bi, S., Han, X., Yu, Y.: An l 1 image transform for edge-preserving smoothing and scene-level intrinsic decomposition. ACM Trans. Graph. (TOG) 34(4), 1–12 (2015)

    Article  MATH  Google Scholar 

  5. Bouwmans, T., Porikli, F., Höferlin, B., Vacavant, A.: Background Modeling and Foreground Detection for Video Surveillance. CRC Press, Boca Raton (2014)

    Book  MATH  Google Scholar 

  6. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dale-Jones, R., Tjahjadi, T.: A study and modification of the local histogram equalization algorithm. Pattern Recognit. 26(9), 1373–1381 (1993)

    Article  Google Scholar 

  8. Deng, X., Wang, H., Liu, X.: Underwater image enhancement based on removing light source color and dehazing. IEEE Access 7, 114297–114309 (2019). https://doi.org/10.1109/ACCESS.2019.2936029

    Article  Google Scholar 

  9. Fattal, R.: Single image dehazing. ACM Trans. Graph. (TOG) 27(3), 1–9 (2008)

    Article  Google Scholar 

  10. Feng, C., Zhuo, S., Zhang, X., Shen, L., Süsstrunk, S.: Near-infrared guided color image dehazing. In: 2013 IEEE International Conference on Image Processing, pp. 2363–2367. IEEE (2013)

  11. Gibson, K.B., Nguyen, T.Q.: Fast single image fog removal using the adaptive wiener filter. In: 2013 IEEE International Conference on Image Processing, pp. 714–718. IEEE (2013)

  12. Goldstein, T., Osher, S.: The split Bregman method for l1-regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goyal, P., Daas, H.A., Benner, P.: Low-rank and total variation regularization and its application to image recovery. arXiv preprint arXiv:2003.05698 (2020)

  14. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

  15. Guo, F., Tang, J., Cai, Z.: Fusion strategy for single image dehazing. Int. J. Dig. Content Technol. Its Appl. 7(1), 19 (2013)

    Google Scholar 

  16. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hautière, N., Tarel, J.P., Aubert, D.: Towards fog-free in-vehicle vision systems through contrast restoration. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

  18. He, J., Zhang, C., Yang, R., Zhu, K.: Convex optimization for fast image dehazing. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2246–2250. IEEE (2016)

  19. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  20. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013). https://doi.org/10.1109/TPAMI.2012.213

    Article  Google Scholar 

  21. Horn, B.K.: Determining lightness from an image. Comput. Graph. Image Process. 3(4), 277–299 (1974)

    Article  Google Scholar 

  22. Huang, S.C., Yeh, C.H.: Image contrast enhancement for preserving mean brightness without losing image features. Eng. Appl. Artif. Intell. 26(5–6), 1487–1492 (2013)

    Article  Google Scholar 

  23. HUANG, W., LI, J., QI, C.: A defogging algorithm for dense fog images via low-rank and dictionary expression decomposition (2020)

  24. Hurlbert, A.: Formal connections between lightness algorithms. JOSA A 3(10), 1684–1693 (1986)

    Article  Google Scholar 

  25. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  26. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  27. John, J., Wilscy, M.: Enhancement of weather degraded video sequences using wavelet fusion. In: 2008 7th IEEE International Conference on Cybernetic Intelligent Systems, pp. 1–6. IEEE (2008)

  28. Kamila, N.K.: Handbook of research on emerging perspectives in intelligent pattern recognition, analysis, and image processing. IGI Global (2015)

  29. Kim, J.H., Jang, W.D., Sim, J.Y., Kim, C.S.: Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 24(3), 410–425 (2013)

    Article  Google Scholar 

  30. Kim, T.K., Paik, J.K., Kang, B.S.: Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans. Consum. Electron. 44(1), 82–87 (1998)

    Article  Google Scholar 

  31. Koschmieder, H.: Theorie der horizontalen sichtweite. Beitrage zur Physik der freien Atmosphare pp. 33–53 (1924)

  32. Land, E.H.: Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. Proc. Natl. Acad. Sci. USA. 80(16), 5163 (1983)

    Article  Google Scholar 

  33. Land, E.H., McCann, J.J.: Lightness and retinex theory. JOSA 61(1), 1–11 (1971)

    Article  Google Scholar 

  34. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)

  35. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, J., Li, G., Fan, H.: Image dehazing using residual-based deep CNN. IEEE Access 6, 26831–26842 (2018)

    Article  Google Scholar 

  37. Liu, Q., Gao, X., He, L., Lu, W.: Single image dehazing with depth-aware non-local total variation regularization. IEEE Trans. Image Process. 27(10), 5178–5191 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, S., Kwok, N., Peng, Y., Li, R., Wu, H.: Fusion based single image de-hazing. In: 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–6. IEEE (2019)

  39. Liu, Z., Xiao, B., Alrabeiah, M., Wang, K., Chen, J.: Single image dehazing with a generic model-agnostic convolutional neural network. IEEE Signal Process. Lett. 26(6), 833–837 (2019)

    Article  Google Scholar 

  40. McCartney, E.J.: Optics of the atmosphere: scattering by molecules and particles. NYJW (1976)

  41. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 617–624 (2013)

  42. Min, X., Zhai, G., Gu, K., Zhu, Y., Zhou, J., Guo, G., Yang, X., Guan, X., Zhang, W.: Quality evaluation of image dehazing methods using synthetic hazy images. IEEE Trans. Multimedia 21(9), 2319–2333 (2019)

    Article  Google Scholar 

  43. Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003)

    Article  Google Scholar 

  44. Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vis. 98(3), 263–278 (2012)

    Article  MathSciNet  Google Scholar 

  45. Perez, P., et al.: Markov random fields and images. IRISA (1998)

  46. Rahman, Z.u., Jobson, D.J., Woodell, G.A.: Multiscale retinex for color rendition and dynamic range compression. In: Applications of Digital Image Processing XIX, vol. 2847, pp. 183–191. International Society for Optics and Photonics (1996)

  47. Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., Yang, M.H.: Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3253–3261 (2018)

  48. Ren, W., Pan, J., Zhang, H., Cao, X., Yang, M.H.: Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int. J. Computer Vis. 128(1), 240–259 (2020)

    Article  Google Scholar 

  49. Rubin, L.: Nonlinenr total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60, 259–265 (1992)

    Article  Google Scholar 

  50. Salazar-Colores, S., Ramos-Arreguín, J.M., Pedraza-Ortega, J.C., Rodríguez-Reséndiz, J.: Efficient single image dehazing by modifying the dark channel prior. EURASIP J. Image Video Process. 2019(1), 66 (2019)

    Article  Google Scholar 

  51. Schaul, L., Fredembach, C., Süsstrunk, S.: Color image dehazing using the near-infrared. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 1629–1632. IEEE (2009)

  52. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I–I. IEEE (2001)

  53. Seow, M.J., Asari, V.K.: Ratio rule and homomorphic filter for enhancement of digital colour image. Neurocomputing 69(7–9), 954–958 (2006)

    Article  Google Scholar 

  54. Shin, J., Kim, M., Paik, J., Lee, S.: Radiance-reflectance combined optimization and structure-guided \(l_0\)-norm for single image dehazing. IEEE Trans. Multimedia 22(1), 30–44 (2019)

    Google Scholar 

  55. Starck, J.L., Murtagh, F., Candès, E.J., Donoho, D.L.: Gray and color image contrast enhancement by the curvelet transform. IEEE Trans. Image Process. 12(6), 706–717 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. Tan, R.T.: Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

  57. Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning framework for image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2995–3000 (2014)

  58. Tang, Q., Yang, J., He, X., Jia, W., Zhang, Q., Liu, H.: Nighttime image dehazing based on retinex and dark channel prior using Taylor series expansion. Comput. Vis. Image Understand. 202, 103086 (2020)

    Article  Google Scholar 

  59. Tarel, J.P., Hautiere, N.: Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2201–2208. IEEE (2009)

  60. Verma, M., Kaushik, V.D., Pathak, V.K.: An efficient deblurring algorithm on foggy images using curvelet transforms. In: Proceedings of the Third International Symposium on Women in Computing and Informatics, pp. 426–431 (2015)

  61. Wang, Q., Ward, R.K.: Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans. Consum. Electron. 53(2), 757–764 (2007)

    Article  Google Scholar 

  62. Wang, W., Yuan, X.: Recent advances in image dehazing (2017)

  63. Wang, W., Yuan, X., Wu, X., Liu, Y.: Fast image dehazing method based on linear transformation. IEEE Trans. Multimedia 19(6), 1142–1155 (2017)

    Article  Google Scholar 

  64. Wang, Y.K., Fan, C.T.: Single image defogging by multiscale depth fusion. IEEE Trans. Image Process. 23(11), 4826–4837 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. Wanting, Y., Ronggui, W., Shuai, F., Xuan, Z.: Variable filter retinex algorithm for foggy image enhancement [j]. J. Comput. Aided Des. Comput. Graph. 6(010), (2010)

  66. Xiao, C., Gan, J.: Fast image dehazing using guided joint bilateral filter. Vis. Comput. 28(6–8), 713–721 (2012)

    Article  Google Scholar 

  67. Xu, Y., Wen, J., Fei, L., Zhang, Z.: Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access 4, 165–188 (2015)

    Article  Google Scholar 

  68. Xu, Z., Liu, X., Ji, N.: Fog removal from color images using contrast limited adaptive histogram equalization. In: 2009 2nd International Congress on Image and Signal Processing, pp. 1–5. IEEE (2009)

  69. Yang, D., Sun, J.: Proximal dehaze-net: A prior learning-based deep network for single image dehazing. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 702–717 (2018)

  70. Yu, J., Xiao, C., Li, D.: Physics-based fast single image fog removal. In: IEEE 10th International Conference on Signal Processing Proceedings, pp. 1048–1052 (2010). https://doi.org/10.1109/ICOSP.2010.5655901

  71. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)

  72. Zhang, K., Wu, C., Miao, J., Yi, L.: Research about using the retinex-based method to remove the fog from the road traffic video. In: ICTIS 2013: Improving Multimodal Transportation Systems-Information, Safety, and Integration, pp. 861–867 (2013)

  73. Zhang, Y., Yang, F., He, W.: An approach for underwater image enhancement based on color correction and dehazing. Int. J. Adv. Robot. Syst. 17(5), 1729881420961643 (2020)

    Google Scholar 

  74. Zheng, M., Qi, G., Zhu, Z., Li, Y., Wei, H., Liu, Y.: Image dehazing by an artificial image fusion method based on adaptive structure decomposition. IEEE Sens. J. 20(14), 8062–8072 (2020). https://doi.org/10.1109/JSEN.2020.2981719

    Article  Google Scholar 

  75. Zhu, L., Fu, C.W., Brown, M.S., Heng, P.A.: A non-local low-rank framework for ultrasound speckle reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5650–5658 (2017)

  76. Zhu, L., Fu, C.W., Jin, Y., Wei, M., Qin, J., Heng, P.A.: Non-local sparse and low-rank regularization for structure-preserving image smoothing. In: Computer Graphics Forum, vol. 35, pp. 217–226. Wiley Online Library (2016)

  77. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P S Baiju.

Ethics declarations

Conflict of interest

The authors declare that this work is original, has not been fully or partly published before and is not currently being considered for publication elsewhere. They also confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baiju, P.S., Antony, S.L. & George, S.N. An intelligent framework for transmission map estimation in image dehazing using total variation regularized low-rank approximation. Vis Comput 38, 2357–2372 (2022). https://doi.org/10.1007/s00371-021-02117-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02117-2

Keywords

Navigation