Skip to main content
Log in

Bayesian Defogging

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Atmospheric conditions induced by suspended particles, such as fog and haze, severely alter the scene appearance. Restoring the true scene appearance from a single observation made in such bad weather conditions remains a challenging task due to the inherent ambiguity that arises in the image formation process. In this paper, we introduce a novel Bayesian probabilistic method that jointly estimates the scene albedo and depth from a single foggy image by fully leveraging their latent statistical structures. Our key idea is to model the image with a factorial Markov random field in which the scene albedo and depth are two statistically independent latent layers and to jointly estimate them. We show that we may exploit natural image and depth statistics as priors on these hidden layers and estimate the scene albedo and depth with a canonical expectation maximization algorithm with alternating minimization. We experimentally evaluate the effectiveness of our method on a number of synthetic and real foggy images. The results demonstrate that the method achieves accurate factorization even on challenging scenes for past methods that only constrain and estimate one of the latent variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1124–1137.

    Article  Google Scholar 

  • Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239.

    Article  Google Scholar 

  • Fattal, R. (2008a) http://www.cs.huji.ac.il/~raananf/projects/defog/index.html.

  • Fattal, R. (2008b). Single image dehazing. In Proc. of ACM SIGGRAPH (Vol. 27, pp. 1–9).

    Google Scholar 

  • Grewe, L., & Brooks, R. (1998). Atmospheric attenuation reduction through multi-sensor fusion. In Proc. of SPIE sensor fusion: architectures, algorithms and applications II (Vol. 3376, pp. 102–109).

    Google Scholar 

  • He, K., Sun, J., & Tang, X. (2009a). http://personal.ie.cuhk.edu.hk/~hkm007/cvpr09/.

  • He, K., Sun, J., & Tang, X. (2009b). Single image haze removal using dark channel prior. In Proc. of IEEE int’l conf on comp. vision and pattern recognition (Vol. 1).

    Google Scholar 

  • Kim, J., & Zabih, R. (2002). Factorial Markov random fields. In Proc. of European conf on comp. vision (pp. 321–334).

    Google Scholar 

  • Klinker, G., Shafer, S., & Kanade, T. (1990). A Physical approach to color image understanding. International Journal of Computer Vision, 4, 7–38.

    Article  Google Scholar 

  • Kolmogorov, V., & Zabih, R. (2004). What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2), 147–159.

    Article  Google Scholar 

  • Komodakis, N., & Paragios, N. (2009). Beyond pairwise energies: efficient optimization for higher-order MRFs. In Proc. of IEEE int’l conf on comp. vision and pattern recognition (pp. 2985–2992).

    Google Scholar 

  • Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., & Lischinski, D. (2008a). http://johanneskopf.de/publications/deep_photo/dehazing/index.html.

  • Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., & Lischinski, D. (2008b). Deep photo: model-based photograph enhancement and viewing. ACM Transactions on Graphics, 27(5), 116:1–116:10.

    Article  Google Scholar 

  • Kratz, L., & Nishino, K. (2009). Factorizing scene albedo and depth from a single foggy image. In Proc. of IEEE int’l conf on comp. vision (pp. 1701–1708).

    Google Scholar 

  • McCartney, E. (1975). Optics of the atmosphere: scattering by molecules and particles. New York: Wiley.

    Google Scholar 

  • Middleton, W. (1952). Vision through the atmosphere. Toronto: University of Toronto Press.

    MATH  Google Scholar 

  • Narasimhan, S. G., & Nayar, S. K. (2002). Vision and the atmosphere. International Journal of Computer Vision, 48(3), 233–254.

    Article  MATH  Google Scholar 

  • Narasimhan, S., & Nayar, S. (2003a). Shedding light on the weather. In Proc. of IEEE int’l conf on comp. vision and pattern recognition (pp. 665–672).

    Google Scholar 

  • Narasimhan, S. G., & Nayar, S. K. (2003b). Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1), 713–724.

    Article  Google Scholar 

  • Narasimhan, S. G., & Nayar, S. K. (2003c). Interactive (De)weathering of an image using physical models. In ICCV workshop on color and photometric methods in comp. vision (CPMCV).

    Google Scholar 

  • Narasimhan, S., Wand, C., & Nayar, S. (2002). All the images of an outdoor scene. In Proc. of European conf on comp. vision (pp. 148–162).

    Google Scholar 

  • Oakley, J., & Satherley, B. (1998). Improving image quality in poor visibility conditions using a physical model for contrast degradation. IEEE Transactions on Image Processing, 7(2), 167–179.

    Article  Google Scholar 

  • Schechner, Y. (2003). http://webee.technion.ac.il/~yoav/research/instant-dehazing.html.

  • Schechner, Y., Narasimhan, S., & Nayar, S. (2003). Polarization-based vision through haze. Applied Optics, 42(3), 511–525.

    Article  Google Scholar 

  • Shafer, S. (1985). Using color to separate reflection components. Color Research and Application, 10(4), 210–218.

    Article  Google Scholar 

  • Szeliski, R., Zabih, R., Scharstein, D., O Veksler, V. K., Agarwala, A., Tappen, M., & Rother, C. (2008). A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6), 1068–1080.

    Article  Google Scholar 

  • Tan, K., & Oakley, J. (2001). Physics-based approach to color image enhancement in poor visibility conditions. Journal of Optical Society America A, 18(10), 2460–2467.

    Article  Google Scholar 

  • Tan, R. (2008a). http://people.cs.uu.nl/robby/fog/index.html.

  • Tan, R. (2008b). Visibility in bad weather from a single image. In Proc. of IEEE int’l conf on comp. vision and pattern recognition (pp. 1–8).

    Google Scholar 

  • Tarel, J. P., & Hautière, N. (2009). Fast visibility restoration from a single color or gray level image. In Proc. of IEEE int’l conf on comp. vision.

    Google Scholar 

  • Tominaga, S., & Wandell, B. (1989). Standard surface-reflectance model and illuminant estimation. Journal of the Optical Society of America A, 6(4), 576–584.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Nishino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishino, K., Kratz, L. & Lombardi, S. Bayesian Defogging. Int J Comput Vis 98, 263–278 (2012). https://doi.org/10.1007/s11263-011-0508-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-011-0508-1

Keywords

Navigation