Skip to main content
Log in

Ca2+ pumping ATPase of cardiac sarcolemma is insensitive to membrane potential produced by K+ and Cl gradients but requires a source of counter-transportable H+

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The sensitivity of the Ca2+ pumping ATPase of bovine cardiac sarcolemma (SL) to changes in membrane potential was studied in a preparation of sealed SL vesicles. Membrane potential was imposed by preincubating the vesicles in media of defined ion composition (K+, Cl, choline+ and gluconate) and diluting into media of differing ion composition. The durations of the ion gradients and relative ion permeabilities were determined in separate experiments by the dependence of the half time for net K+ (or choline+) movement coupled with these anions (Cl or gluconate), registered by the fluorescence of 1-anilino-8-naphthalene sulfonate (Chiu, V.C.K., Jaumes. D.H. 1980.J. Membrane Biol. 56:203–218). Relative permeabilities were: 1.0, K+, ≥10.0, 1 μm valinomycin-K+; 4.0, Cl, 0.66, choline+; 0.38, gluconate. Durations of the gradients ranged between 17 sec (KCl, valinomycin) to 195 sec (K+-gluconate). In separate experiments. active Ca2+ uptake was monitored using chlorotetracycline (CTC) fluorescence, a technique validated by 45-Ca2+ measureaments (Dixon, D., Brandt, N., Haynes, D.H. 1984.J. Biol. Chem. 259:13737–13741). Active Ca2+ uptake was initiated in the presence of monovalent ion gradients. The values of the membrane potentials (E m ) imposed by the monovalent ion gradients were calculated using the ion concentrations, their relative permeabilities and the Goldman-Hodgkin-Katz equation. No effect of membrane potential on transport rate was observed (≤4%, for 5–7%sd) for imposed potentials as extreme as ≥+71 and ≤−67 mV. Formal analysis shows that the above observations are not compatible with models in which the Ca2+ pumping ATPase functions in an electrogenic or charge-uncompensated fashion. Further experimentation showed that the pump rate is slowed when uptake is measured at less-than-adequate concentrations of buffer (5vs. 25mm HEPES/Tris). This, together with further control experiments using nigericin and FCCP, gave evidence that the pump requires a source of counter-transportable H+ in the vesicle lumen. The above experimentation also underlines the need for control of internal pH to obviate erroneous interpretation of ion perturbation experiments. The results are compared with results obtained with the Ca2+ ATPase pump of skeletal sarcoplasmic reticulum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartschat, D.K., Cyr, D.L., Lindenmayer, G.E. 1980. Depolarization-induced calcium uptake by vesicles in a highly enriched sarcolemma preparation from canine ventricle.J. Biol. Chem. 255:10044–10047

    PubMed  Google Scholar 

  2. Beeler, T.J. 1980. Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles.J. Biol. Chem. 255:9156–9161

    PubMed  Google Scholar 

  3. Beeler, T.J., Farmen, R.H., Martonosi, A.N. 1981. The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum.J. Membrane Biol. 62:113–137

    Google Scholar 

  4. Beeler, T., Martonosi, A. 1979. The relationship between membrane potential and Ca2+ fluxes in isolated sarcoplasmic reticulum vesicles.FEBS Lett. 98:173–176

    PubMed  Google Scholar 

  5. Beeler, T., Russell, J.T., Martonosi, A. 1979. Optical probe responses on sarcoplasmic reticulum. Oxacarbocyanines as probes of membrane potential.Eur. J. Biochem. 95:579–591

    PubMed  Google Scholar 

  6. Bers, D.M., Philipson, K.D., Nishimoto, A.Y. 1980. Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles.Biochim. Biophys. Acta 601:358–371

    PubMed  Google Scholar 

  7. Carafoli, E. 1984. Molecular mechanistic and functional aspects of the plasma membrane calcium pump.In: Epithelial Calcium and Phosphate Transport: Molecular and Cellular Aspects. F. Bronner and M. Paterlile, Editors. pp. 13–17. Alan R. Liss, New York

    Google Scholar 

  8. Caroni, P., Carafoli, E. 1981a. The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purfication.J. Biol. Chem. 3263–3270

  9. Caroni, P., Carafoli, E. 1981b. Regulation of Ca2+-pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation process.J. Biol. Chem. 256:9371–9373

    Google Scholar 

  10. Caroni, P., Carafoli, E. 1983. The regulation of the Na+−Ca2+-exchanger of heart sarcolemma.Eur. J. Biochem. 132:451–460

    PubMed  Google Scholar 

  11. Caroni, P., Zurini, M., Clark, A., Carafoli, E. 1983. Further characterization and reconstitution of the purified Ca2+-pumping ATPase of heart sarcolemma.J. Biol. Chem. 258:7305–7310

    PubMed  Google Scholar 

  12. Chiesi, M., Inesi, G. 1980. Adenosine 5′-triphosphate dependent fluxes of manganese and hydrogen ions in sarcoplasmic reticulum vesicles.Biochemistry 19:2912–2918

    PubMed  Google Scholar 

  13. Chiu, V.C.K., Haynes, D.H. 1980a. Rapid kinetic study of passive permeability of a Ca2+-ATPase rich fraction of the sarcoplasmic reticulum.J. Membrane Biol. 56:203–218

    Google Scholar 

  14. Chiu, V.C.K., Haynes, D.H. 1980b. Rapid kinetic studies of active Ca2+ transport in sarcoplasmic reticulum.J. Membrane Biol. 56:219–239

    Google Scholar 

  15. Dixon, D.A. 1987. Ca2+−Mg2+-ATPase of Cardiac Sarcolemma: Operation and Regulation, a Ph.D. Dissertation in Pharmacology, University of Miami, Miami, Florida

    Google Scholar 

  16. Dixon, D., Brandt, N., Haynes, D.H. 1984. Chlorotetracycline fluorescence is a quantitative measure of the free internal Ca2+ concentrations achieved by active transport.In situ calibration and application to bovine cardiac sarcolemmal vesicles.J. Biol. Chem. 259:13737–13741

    PubMed  Google Scholar 

  17. Dixon, D.A., Haynes, D.H. 1989. Kinetic characterization of the Ca2+ pumping ATPase of cardiac sarcolemma in four states of activation.J. Biol. Chem. 264:13612–13622

    PubMed  Google Scholar 

  18. Fozzard, H.A., Lee, CO. 1976. Influence of changes in external potassium and chloride ions on membrane potential and intracellular potassium ion activity in rabbit ventricular muscle.J. Physiol. (London) 256:663–689

    Google Scholar 

  19. Goldman, D.E. 1943. Potential impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Article  Google Scholar 

  20. Harris, E.J., Pressman, B.C. 1967. Obligate cation exchanges in red cells.Nature (London) 216:918–920

    Google Scholar 

  21. Hartung, K., Grell, E., Hasselbach, W., Bamberg, E. 1987. Electrical pump currents generated by the Ca2+-ATPase of sarcoplasmic reticulum vesicles adsorbed on black lipid membranes.Biochim. Biophys. Acta 900:209–220

    PubMed  Google Scholar 

  22. Haynes, D.H. 1982. Relationship between H+, anion, and monovalent cation movements and Ca2+ transport in sarcoplasmic reticulum: Further proof of a cation exchange mechanism for the Ca2+−Mg2+-ATPase pump.Arch. Biochem. Biophys. 215:444–461

    PubMed  Google Scholar 

  23. Haynes, D.H., Mandveno, A. 1983. The pH dependence of the Ca2+, Mg2+-ATPase of sacroplasmic reticulum: Evidence that the Ca2+ translocator bears a doubly negative charge.J. Membrane Biol. 74:25–40

    Google Scholar 

  24. Haynes, D.H., Mandveno, A. 1987. Computer modeling of Ca2+ pump function of Ca2+−Mg2+-ATPase of sarcoplasmic reticulum.Physiol. Rev. 67:244–284

    PubMed  Google Scholar 

  25. Haynes, D.H., Simkowitz, P. 1977. 1-Anilino-8-naphthalenesulfonate. A fluorescent probe of ion and ionophore transport kinetics and trans-membrane asymmetry.J. Membrane Biol. 33:63–108

    Google Scholar 

  26. Hodgkin, A.I., Katz, B. 1949. The effect of sodium ions on electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  27. Kadoma, M., Froehlich, J., Reeves, J., Sutko, J. 1982. Kinetics of sodium ion induced calcium ion release in calcium ion loaded cardiac sarcolemmal vesicles: Determination of initial velocities by stopped-flow spectrophotometry.Biochemistry 21:1914–1918

    PubMed  Google Scholar 

  28. Kanazawa, T., Yamada, S., Yamamoto, T., Tonomura, Y. 1971. Reaction mechanism of Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle.J. Biochem. 70:95–123

    PubMed  Google Scholar 

  29. Kometani, T., Kasai, M. 1978. Ionic permeability of sarcoplasmic reticulum measured by light scattering method.J. Membrane Biol. 41:295–308

    Google Scholar 

  30. Kuwayama, H. 1988. The membrane potential modulates the ATP-dependent Ca2+ pump of cardiac sarcolemma.Biochim. Biophys. Acta 940:295–299

    PubMed  Google Scholar 

  31. MacDonald, R.C., Bangham, A.D. 1972. Comparsion of double layer potentials in lipid monolayers and lipid bilayer membranes.J. Membrane Biol. 7:29–53

    Google Scholar 

  32. McKinley, D., Meissner, C. 1977. Sodium and potassium ion permeability of sarcoplasmic reticulum vesicles.FEBS Lett. 82:47–50

    PubMed  Google Scholar 

  33. McKinley, D., Meissner, G. 1978. Evidence for a K+, Na+ permeable channel in sarcoplasmic reticulum.J. Membrane Biol. 44:159–186

    Google Scholar 

  34. Meissner, G. 1981. Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles.J. Biol. Chem. 256:636–643

    PubMed  Google Scholar 

  35. Miller, C. 1978. Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties.J. Membrane Biol. 40:1–23

    Google Scholar 

  36. Millman, M.S., Caswell, A.H., Haynes, D.H. 1980. Kinetics of chlorotetracycline permeation in fragmental ATPase-rich sarcoplasmic reticulum.Membr. Biochem. 3:291–315

    PubMed  Google Scholar 

  37. Morimoto, T., Kasai, M. 1986. Reconstitution of sarcoplasmic reticulum Ca2+-ATPase vesicles lacking ion channels and demonstration of electrogenicity of Ca2+-pump.J. Biochem. (Tokyo) 99:1071–1080

    Google Scholar 

  38. Philipson, K.D., Bersohn, M.M., Nishimoto, A. 1982. Effects of pH on Na2+−Ca2+ exchange in canine cardiac sarcoplemmal vesicles.Circ. Res. 50:287–293

    PubMed  Google Scholar 

  39. Pitts, B.J.R. 1979. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles.J. Biol. Chem. 254:6232–6235

    PubMed  Google Scholar 

  40. Reeves, J.P., Sutko, J.L. 1979. Sodium-calcium ion exchange in cardiac membrane vesicles.Proc. Natl. Acad. Sci. USA 76:590–594

    PubMed  Google Scholar 

  41. Reuter, H., Seitz, N. 1968. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition.J. Physiol. (London) 195:451–470

    Google Scholar 

  42. Russell, J.T., Beeler, T., Martonosi, A. 1979a. Optical probe responses on sarcoplasmic reticulum: Merocyanine and oxonol dyes.J. Biol. Chem. 254:2047–2052

    Google Scholar 

  43. Russell, J.T., Beeler, T., Martonosi, A. 1979b. Optical probe responses on sarcoplasmic reticulum. Oxaccarbocyanines.J. Biol. Chem. 254:2040–2046

    Google Scholar 

  44. Schilling, W.P., Schuil, D.W., Bagwell, E.E., Lindenmayer, G.E. 1984. Sodium and potassium permeability of membrane vesicles in a sarcolemma-enriched preparation from canine ventricles.J. Membrane Biol. 77:101–114

    Google Scholar 

  45. Smallwood, J.I., Waisman, D.M., Lafreniere, D., Rasmussen, H. 1983. Evidence that the erythrocyte calcium pump catalyzes a Ca2+:nH+ exchange.J. Biol. Chem. 258:11092–11097

    PubMed  Google Scholar 

  46. Trevorrow, K., Haynes, D.H. 1984. The thermodynamic efficiency of the Ca2+−Mg2+-ATPase is one hundred percent.J. bioenerg. Biomembr. 16:53–59

    PubMed  Google Scholar 

  47. Zimniak, P., Racker, E. 1978. Electrogenicity of Ca2+ transport catalyzed by the Ca2+-ATPase for sarcoplasmic reticulum.J. Biol. Chem. 253:4631–4637

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, D.A., Haynes, D.H. Ca2+ pumping ATPase of cardiac sarcolemma is insensitive to membrane potential produced by K+ and Cl gradients but requires a source of counter-transportable H+ . J. Membrain Biol. 112, 169–183 (1989). https://doi.org/10.1007/BF01871278

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871278

Key Words

Navigation