Skip to main content
Log in

Computerized tolerance analysis of disk cam mechanisms with a roller follower

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The tolerance analysis is one of the key elements of design and manufacturing of cam mechanisms. This paper presents a computerized method for analyzing the tolerances in disk cam mechanisms with a roller follower. By employing the concept of simulated higher-pair contact analysis, the kinematic deviation of the follower motion arising from the tolerance amount of each design parameter can be determined numerically. The offset translating roller follower and the oscillating roller follower cases are given to illustrate the proposed method. The tolerance analysis results show that, owing to the combined effects of various design parameters, the position accuracy of the follower motion may degrade considerably. But, the tolerance amounts of the design parameters may also have a compensating effect to enhance the relative accuracy of the follower motion between its high and low dwell positions. Hence, it is possible to find the optimal tolerance combination for balancing the kinematic accuracy and the tolerance amounts of disk cam mechanisms with a roller follower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

theoretical contact point

A*:

actual contact point

A n :

intersection of the contact normal of point A and the actual cam profile

A r :

intersection of line O 2 A and the actual cam profile

C :

theoretical roller center

C*:

actual roller center

e :

theoretical follower offset

E :

theoretical offset reference point

E*:

actual offset reference point

f :

distance from the cam center to the follower pivot point

F :

vector function of a nonlinear system

F1, F2, F3:

equations of tangency

I12, I13, I23:

instant centers

J :

Jacobian matrix

k :

unit vector of the Z-axis

l :

arm length of the oscillating follower

L :

theoretical displacement function of the translating follower = L(θ)

L*:

actual displacement function of the translating follower = L*(θ)

n C :

unit normal vector to the cam surface

n F :

unit normal vector to the follower surface

n R :

unit normal vector to the actual cam profile with Δr being specified

n T :

unit normal vector to the theoretical cam profile

O 2 :

fixed pivot of the cam

O 3 :

theoretical fixed pivot of the oscillating follower

O3*:

actual fixed pivot of the oscillating follower

q :

distance from the cam center to the instant center I 23

Q :

theoretical location of the instant center I 23

Q*:

actual location of the instant center I 23

r :

radial dimension of the cam profile

r b :

radius of the base circle

r f :

radius of the follower roller

R C :

position vector of the cam surface

R F :

position vector of the follower surface

R R :

actual cam profile coordinates with Δr being specified

R T :

theoretical cam profile coordinates

S :

follower motion program = S(θ)

XY:

Cartesian coordinate system fixed on the 2-D cam

XYZ:

Cartesian coordinate system fixed on the 3-D cam

α :

subtending angle between O 2 Q and Q A

δS rss :

conservative index for evaluating the relative accuracy of the follower motion

Δ:

delta, variation, increment

Δ :

vector of updating values for the unknowns

Δe :

variation of the follower offset

Δf :

distance variation between cam and follower pivots

Δl :

arm length error of the oscillating follower

Δn :

normal-direction error of the cam profile

Δr :

radial dimension error of the cam profile

Δr f :

radius error of the follower roller

ΔS :

displacement error of the follower

ΔS e :

ΔS caused by Δe

ΔS f :

ΔS caused by Δf

ΔS l :

ΔS caused by Δl

ΔS r :

ΔS caused by Δr

\( \Updelta S_{{r_{f} }} \) :

ΔS caused by Δr f

ΔS rss :

root-sum-square form of ΔS

S rss)max :

maximum value of ΔS rss

S rss)min :

minimum value of ΔS rss

ΔS wor :

worst-case form of ΔS

ε1, ε2:

small specified numbers

θ :

cam rotation angle, rotation angle of the camshaft

θ*:

pseudo cam rotation angle, angular parameter for determining cam profile coordinates

ξ :

theoretical angular displacement function of the oscillating follower = ξ(θ)

ξ*:

actual angular displacement function of the oscillating follower = ξ*(θ)

υ*:

angular parameter for determining follower profile coordinates

σ :

safety coefficient

ϕ :

theoretical pressure angle

ϕ*:

actual pressure angle

ψ :

theoretical displacement function of the follower = ψ(θ)

ψ*:

actual displacement function of the follower = ψ *(θ)

ω 2 :

angular velocity of the cam

References

  1. Norton RL (2002) Cam design and manufacturing handbook. Industrial, New York, pp 17–68; pp 315–334

  2. Rothbart HA (ed) (2004) Cam design handbook. McGraw-Hill, New York, pp 27–105; pp 285–313

  3. Norton RL (1988) Effect of manufacturing method on dynamic performance of cams—an experimental study. Part I—eccentric cams and Part II—double dwell cams. Mech Mach Theory 23(3):191–208

    Article  Google Scholar 

  4. Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York, pp 315–320

    Google Scholar 

  5. Grosjean J (1991) Kinematics and dynamics of mechanisms. McGraw-Hill, New York, pp 267–285

    Google Scholar 

  6. Rao SS, Gavane SS (1982) Analysis and synthesis of mechanical error in cam-follower systems. Trans ASME J Mech Des 104(1):52–62

    Article  Google Scholar 

  7. Rao SS (1984) Error analysis of cam-follower systems: a probabilistic approach. Proc Inst Mech Eng C J Mech Eng Sci 198(12):155–162

    Article  Google Scholar 

  8. Zhang C, Wang HP (1993) Tolerance analysis and synthesis for cam mechanisms. Int J Prod Res 31(5):1229–1245

    Article  Google Scholar 

  9. Wu LI, Chang WT (2005) Analysis of mechanical errors in disc cam mechanisms. Proc Inst Mech Eng C J Mech Eng Sci 219(2):209–224

    Article  MathSciNet  Google Scholar 

  10. Chang WT, Wu LI (2006) Mechanical error analysis of disk cam mechanisms with a flat-faced follower. J Mech Sci Technol 20(3):345–357

    Article  Google Scholar 

  11. Chang WT (2007) Analysis of mechanical errors in planar cam mechanisms and its applications. PhD dissertation. National Tsing Hua University, Hsinchu

    Google Scholar 

  12. Litvin FL (1989) Theory of gearing. NASA Reference Publication 1212, Washington, DC, pp 87–92; pp 241–295

  13. Litvin FL (1994) Gear geometry and applied theory. Prentice-Hall, Englewood Cliffs, pp 258–287

    Google Scholar 

  14. Tsay CB (1988) Helical gears with involute shaped teeth: geometry, computer simulation, tooth contact analysis, and stress analysis. Trans ASME J Mech Transm Autom Des 110(4):482–491

    MathSciNet  Google Scholar 

  15. Tseng JT, Tsay CB (2006) Undercutting and contact characteristics of cylindrical gears with curvilinear shaped teeth generated by hobbing. Trans ASME J Mech Des 128(3):634–643

    Article  Google Scholar 

  16. Bruyère J, Dantan JY, Bigot R, Martin P (2007) Statistical tolerance analysis of bevel gear by tooth contact analysis and Monte Carlo simulation. Mech Mach Theory 42(10):1326–1351

    Article  MATH  Google Scholar 

  17. Wu LI (2003) Calculating conjugate cam profiles by vector equations. Proc Inst Mech Eng C J Mech Eng Sci 217(10):1117–1123

    Article  Google Scholar 

  18. Wu LI, Chang WT, Liu CH (2007) The design of varying velocity translating cam mechanisms. Mech Mach Theory 42(3):1326–1351

    Article  Google Scholar 

  19. Chang WT, Wu LI, Liu CH (2008) The kinematic design of a planar-cam type pick-and-place device. J Mech Sci Technol 22(12):2328–2336

    Article  Google Scholar 

  20. Chang WT, Wu LI, Fuh KH, Lin CC (2008) Inspecting profile errors of conjugate disk cams with coordinate measurement. Trans ASME J Manuf Sci Eng 130(1):011009

    Article  Google Scholar 

  21. Chang WT, Wu LI (2008) A simplified method for examining profile deviations of conjugate disk cams. Trans ASME J Mech Des 130(5):052601

    Article  MathSciNet  Google Scholar 

  22. Garrett RE, Hall AS Jr (1969) Effect of tolerance and clearance in linkage design. Trans ASME J Eng Ind 91B(1):198–202

    Google Scholar 

  23. Creveling CM (1997) Tolerance design: a handbook for developing optimal specifications. Addison–Wesley, Reading, pp 124–148

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Science Council of Taiwan for supporting this research under Grant No. NSC-94-2212-E-007-030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Tung Chang.

Appendix

Appendix

In reference to Fig. 5, the steps of implementing the computation process for the simulated contact analysis method are described as follows.

  • Step 1 Read data of design parameters and their corresponding errors (or tolerances) of the cam mechanism and also the program control parameters Δθ, ε1 and ε2. For the translating follower case, the values of r b , r f and e should be read, and for the oscillating follower case, those of r b , r f , f and l should be read; the correspondingly specified error (or tolerance) amounts (Δr, Δr f , Δe) or (Δr, Δr f , Δf, Δl) are also read. The parameter Δθ is a specified increment of the cam rotation angle, and the parameters ε1 and ε2 are small specified and positive numbers. Then, let θ = 0°.

  • Step 2 Calculate the theoretical displacement of the follower ψ(θ). In this step, the value of S(θ) is specified or calculated first. Then, for the translating follower case, ψ(θ) = L(θ), whose value can be calculated by using Eq. 5. Also, for the oscillating follower case, ψ(θ) = ξ(θ), whose value can be calculated by using Eq. 11.

  • Step 3 Input estimated values of parameters θ*, ψ* and υ*, the three unknowns to be solved. For the translating follower case, the initial guesses are suggested by θ* = θ, \( \psi^{*} = \psi (\theta ) = L(\theta ) \) and υ* = ϕ(θ), in which, ϕ(θ) can be calculated by using Eq. 4. For the oscillating follower case, the initial guesses are suggested by θ* = θ, \( \psi^{*} = \psi (\theta ) = \xi (\theta ) \) and υ* = ϕ(θ), in which, ϕ(θ) can be calculated by using Eq. 12.

  • Step 4 Calculate R T (θ*) by using Eq. 1 for the translating follower case or by using Eq. 7 for the oscillating follower case. Also, calculate R T (θ*) by using a numerical differentiation algorithm. Then, calculate R R (θ*) and n R (θ*) by using Eqs. 14 and 15, respectively.

  • Step 5 Let R C (θθ*) = R R (θ*) and n C (θθ*) = n R (θ*) as those shown in Eqs. 23 and 24, respectively. Then, for the translating follower case, calculate R F (θψ*, υ*) and n F (θψ*, υ*) by using Eqs. 35 and 36, respectively. Also, for the oscillating follower case, calculate R F (θψ*, υ*) and n F (θψ*, υ*) by using Eqs. 40 and 41, respectively.

  • Step 6 Substitute the values of R C (θθ*), n C (θθ*), R F (θψ*, υ*) and n F (θψ*, υ*) into Eqs. 2931. Then, let F be the vector of the calculated function values, that is,

    $$ {\mathbf{F}} = \left\{ {\begin{array}{*{20}l} {F_{1} } \\ {F_{2} } \\ {F_{3} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}l} {R_{Cx} (\theta , \theta^{ * } ) - R_{Fx} (\theta , \psi^{ * } , \upsilon^{ * } )} \\ {R_{Cy} (\theta , \theta^{ * } ) - R_{Fy} (\theta , \psi^{ * } , \upsilon^{ * } )} \\ {n_{Cx} (\theta , \theta^{ * } )n_{Fy} (\theta , \psi^{ * } , \upsilon^{ * } ) - n_{Cy} (\theta , \theta^{ * } )n_{Fx} (\theta , \psi^{ * } , \upsilon^{ * } )} \\ \end{array} } \right\} . $$
    (48)

    Check whether ‖F‖ ≤ ɛ1 or not. If so, go to step 7, or else, go to step 8.

  • Step 7 Calculate the displacement error of the follower ΔS(θ) by using Eq. 37 for the translating follower case or by using Eq. 42 for the oscillating follower case. Then, print ΔS(θ) and update the cam rotation angle by θ = θ + Δθ. Check whether θ > 360 or not. If so, stop the computation process. Else, go to step 2.

  • Step 8 Calculate the Jacobian matrix of vector F by

    $$ {\mathbf{J}} = \left[ {\begin{array}{*{20}c} {\partial F_{1} /\partial \theta^{ * } } & {\partial F_{1} /\partial \psi^{ * } } & {\partial F_{1} /\partial \upsilon^{ * } } \\ {\partial F_{2} /\partial \theta^{ * } } & {\partial F_{2} /\partial \psi^{ * } } & {\partial F_{2} /\partial \upsilon^{ * } } \\ {\partial F_{3} /\partial \theta^{ * } } & {\partial F_{3} /\partial \psi^{ * } } & {\partial F_{3} /\partial \upsilon^{ * } } \\ \end{array} } \right], $$
    (49)

    in which, employing a numerical differentiation algorithm for calculating the partial differential terms is suggested.

  • Step 9 Calculate the vector of updating values for the unknowns by

    $$ {\varvec{\Updelta}} = \left\{ {\begin{array}{*{20}c} {\Updelta \theta^{ * } } \\ {\Updelta \psi^{ * } } \\ {\Updelta \upsilon^{ * } } \\ \end{array} } \right\} = - {\mathbf{J}}^{ - 1} {\mathbf{F}}. $$
    (50)

    Check whether \( \left\| {\varvec{\Updelta}}\right\| \le \varepsilon_{2} \) or not. If so, go to step 3 for inputting new estimated values of parameters θ*, ψ* and υ*. Else, update the parameters by

    $$ \left\{ {\begin{array}{*{20}c} {\theta^{ * } } \\ {\psi^{ * } } \\ {\upsilon^{ * } } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {\theta^{ * } + \Updelta \theta^{ * } } \\ {\psi^{ * } + \Updelta \psi^{ * } } \\ {\upsilon^{ * } + \Updelta \upsilon^{ * } } \\ \end{array} } \right\}, $$
    (51)

    and then go to step 4.

The above steps demonstrate the use of Newton–Raphson method to solve the equations of tangency, and also to determine functions θ*(θ), ψ*(θ) and υ*(θ) numerically. After the actual follower displacement function ψ*(θ) is determined, the follower displacement error function ΔS(θ) can be correspondingly obtained. After the computation process being programmed, the follower motion deviations caused by different tolerance degrees can all be simulated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, WT., Wu, LI. Computerized tolerance analysis of disk cam mechanisms with a roller follower. Engineering with Computers 25, 247–260 (2009). https://doi.org/10.1007/s00366-008-0121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-008-0121-2

Keywords

Navigation