Skip to main content
Log in

Comprehensive Overview of Nano, Micro, and Macro Tribometers in Practice

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Tribological studies, crucial in understanding the complex interactions between surfaces in relative motion, necessitate the use of diverse tribometers to explore a wide range of materials and operational conditions. This research paper provides an extensive review of different types of tribometers, aiming to elucidate their respective strengths, limitations, and applications in the realm of friction and wear analysis. The research not only aids in demystifying the intricacies of tribometry but also serves as a guide for researchers and engineers seeking to choose an appropriate tribometer for specific experimental objectives. By understanding the nuances of each tribometer type, researchers can make informed decisions to optimize experimental setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data and Material (Data Transparency)

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Code Availability

Not Applicable.

References

  1. Singhal S et al (2022) Critical review on tribometers and their contact mechanism. Optim Ind Syst 7:217–225

    Google Scholar 

  2. Bhushan B, Ko PL (2003) Introduction to tribology. Appl Mech Rev 56(1):B6–B7

    Article  Google Scholar 

  3. Stachowiak G, Batchelor AW (2013) Engineering tribology. Butterworth-heinemann, Oxford

    Google Scholar 

  4. Gohar R, Rahnejat H (2018) Fundamentals of tribology. World Scientific, Singapore

    Book  Google Scholar 

  5. Bhushan B (1999) Principles and applications of tribology. Wiley, New York

    Google Scholar 

  6. Wen S, Huang P (2012) Principles of tribology. Wiley, New York

    Google Scholar 

  7. Williams JA (2005) Engineering tribology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Glaeser W (1992) Materials for tribology, vol 20. Elsevier, Amsterdam

    Book  Google Scholar 

  9. Godet M (1990) Third-bodies in tribology. Wear 136(1):29–45

    Article  Google Scholar 

  10. Hutchings I, Shipway P (2017) Tribology: friction and wear of engineering materials. Butterworth-heinemann, Oxford

    Google Scholar 

  11. Stolarski T (1990) Tribology in machine design. Industrial Press Inc., New York

    Google Scholar 

  12. Taylor CM (1993) Engine tribology, vol 26. Elsevier, Amsterdam

    Google Scholar 

  13. Menezes PL et al (2013) Tribology for scientists and engineers. Springer, New York

    Book  Google Scholar 

  14. Lampaert V, Al-Bender F, Swevers J (2004) Experimental characterization of dry friction at low velocities on a developed tribometer setup for macroscopic measurements. Tribol Lett 16:95–105

    Article  Google Scholar 

  15. Zmitrowicz A (2006) Wear patterns and laws of wear–a review. J Theor Appl Mech 44(2):219–253

    Google Scholar 

  16. Kim H-J et al (2016) Nano-lubrication: a review. Int J Precis Eng Manuf 17:829–841

    Article  Google Scholar 

  17. Rossouw PE (2003) Friction: an overview. In: Seminars in Orthodontics. Elsevier

  18. Valdes MJ et al (2020) Tribometry: how is friction research quantified? A review. Int J Eng Res Technol 13:2596–2610

    Article  Google Scholar 

  19. Kannan KR et al (2023) Brazing of sintered iron to mild steel for wind turbine brake pad applications. Proc Inst Mech Eng Part L 4:14644207231218372

    Google Scholar 

  20. Ratna-Kumar PS et al (2023) Tribological behavior of friction stir process surface hybrid composite AA5083/MWCNT/Al2SiO5 using multi-quadratic RBF algorithm. Carbon Lett 33:1–15

    Google Scholar 

  21. Rajesh-Kannan K, Vaira-Vignesh R, Govindaraju M (2023) Tribological characteristics of copper-based functionally gradient material for wind turbines brake pads. J Tribol 145(6):061703

    Article  Google Scholar 

  22. Muralidharan K, Vignesh RV, Govindaraju M (2023) Tribological characterization of functionally gradient wind turbine brake pads reinforced with rare earth metal oxide. Proceedings of the institution of mechanical engineers part c-journal of mechanical engineering science

  23. Chandhan Kumar V et al (2023) Tribological characterization of functionally gradient composite (Cu–Fe–CeO2–Al2O3–Cg) for wind turbine brake pad. Tribol Mater Surf Interfaces 17(1):3–21

    Article  CAS  Google Scholar 

  24. Rajesh KK et al (2023) Influence of rare earth oxide and graphite on the mechanical and tribological properties of Fe/Cu based sintered friction materials. Sci Sinter 00:34–34

    Article  Google Scholar 

  25. Ramalingam VV, Kota PK, Govindaraju M (2022) Tribological performance of the continuous steel fiber-reinforced cu based friction material for heavy-duty braking applications. Tribologia 39(1–2):30–38

    Google Scholar 

  26. Noorawzi N, Samion S (2016) Tribological effects of vegetable oil as alternative lubricant: a pin-on-disk tribometer and wear study. Tribol Trans 59(5):831–837

    Article  Google Scholar 

  27. Ahmer S et al (2016) Experimental results of the tribology of aluminum measured with a pin-on-disk tribometer: Testing configuration and additive effects. Friction 4:124–134

    Article  CAS  Google Scholar 

  28. Lin Z et al (2023) Modeling of contact temperatures and their influence on the tribological performance of PEEK and PTFE in a dual-pin-on-disk tribometer. Friction 11(4):546–566

    Article  CAS  Google Scholar 

  29. Kurre SK et al. (2023) Experimental study of friction and wear characteristics of bio-based lubricant on pin-on-disk tribometer. Materials Today: Proceedings

  30. Hansen E et al (2023) Establishment and calibration of a digital twin to replicate the friction behaviour of a pin-on-disk tribometer. Lubricants 11(2):75

    Article  Google Scholar 

  31. Vásquez-Chacón IA et al (2023) Running-in evaluation after a rail grinding process using a pin-on-disk tribometer. Wear 522:204686

    Article  Google Scholar 

  32. Fang C et al. (2023) Experimental investigation of tribochemical processes in frictional contacts using a pin-on-disk tribometer. SAE Technical Paper.

  33. Chen K et al (2022) Study of friction and wear characteristics of PEEK by reciprocating sliding experiment and temperature dependences simulation. Tribol Lett 70(4):99

    Article  Google Scholar 

  34. Delgado A et al (2022) AlCrVN coatings deposited by cathodic arc: Friction and wear properties evaluated using reciprocating sliding test. Surf Coat Technol 442:128140

    Article  CAS  Google Scholar 

  35. Yang L et al (2022) Study on sliding friction and wear behavior of M50 bearing steel with rare earth addition. Tribol Int 174:107725

    Article  CAS  Google Scholar 

  36. Liu T et al (2022) Modified method for determination of wear coefficient of reciprocating sliding wear and experimental comparative study. J. Marine Sci Eng 10(8):1014

    Article  Google Scholar 

  37. Swirad S et al (2023) Effects of the surface layer of steel samples after ball burnishing on friction and wear in dry reciprocating sliding. Sci Rep 13(1):11315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magnus C, Gulenc IT, Rainforth W (2022) Ambient dry sliding friction and wear behaviour of laser surface textured (LST) Ti3SiC2 MAX phase composite against hardened steel and alumina. Wear 490:204184

    Article  Google Scholar 

  39. Şenel MC, Kanca Y, Gürbüz M (2022) Reciprocating sliding wear properties of sintered Al-B4C composites. Int J Miner Metall Mater 29(6):1261–1269

    Article  Google Scholar 

  40. Hutchings I, Gee M, Santner E (2011) Friction and wear. Springer handbook of metrology and testing. pp 743–768

  41. Lai J et al (2023) Contribution of hardness and work hardening to the wear resistance of Pt-based metallic surfaces revealed by nanoscale reciprocating sliding. Appl Surf Sci 614:156178

    Article  CAS  Google Scholar 

  42. Li J et al (2022) Sliding friction and wear properties of 40CrNiMo steel after laser hardening against GCr15 steel under oil lubrication. Coatings 12(5):604

    Article  Google Scholar 

  43. Pinto-Borges H et al (2023) Stresses, friction, and wear on different materials and design for temporomandibular joint total joint replacement (TMJ TJR). Tribol Int 178:108051

    Article  CAS  Google Scholar 

  44. Simonetto E et al (2023) A new machine for testing ferrofluids lubrication performances by reciprocating sliding wear. Wear 516:204601

    Article  Google Scholar 

  45. Cao J et al (2022) Tribological properties of the 40Cr/GCr15 tribo-pair under unidirectional rotary and reciprocating dry sliding. Coatings 12(5):557

    Article  CAS  Google Scholar 

  46. Zhu X et al (2023) Frictional behavior and wear mechanisms of Ag/MoS2/WS2 composite under reciprocating microscale sliding. Tribol Int 185:108510

    Article  CAS  Google Scholar 

  47. Govande AR, Sunil BR, Dumpala R (2023) Reciprocating sliding wear behavior of the heat-treated WC-12Co coatings. Proc Inst Mech Eng Part J 237(4):798–807

    Article  CAS  Google Scholar 

  48. Carmona-Cervantes IA et al (2023) Effect of recycled polyvinyl butyral (rPVB) addition on the tribological performance of glass-fiber reinforced polyamide (PAGF) during reciprocating sliding wear conditions. Polymers 15(11):2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang D et al (2022) Effect of two graphene coatings on the friction and wear of sliding electrical contact interface. Lubricants 10(11):305

    Article  CAS  Google Scholar 

  50. Mujtaba M et al (2021) Effect of alcoholic and nano-particles additives on tribological properties of diesel–palm–sesame–biodiesel blends. Energy Rep 7:1162–1171

    Article  Google Scholar 

  51. Opia AC et al (2022) Tribological behavior of organic formulated anti-wear additive under high frequency reciprocating rig and unidirectional orientations: Particles transport behavior and film formation mechanism. Tribol Int 167:107415

    Article  CAS  Google Scholar 

  52. Du J et al (2023) Development of a novel reciprocating cryogenic tribometer through deformations of measurement structure. Rev Sci Inst 94(6):89

    Article  Google Scholar 

  53. Gnanavelbabu A, Gowtham G (2023) Titanium nitride concentration and coordination effect with hexagonal boron nitride enhancing the reciprocating wear behavior of AZ91D alloy-based composites. Proc Inst Mech Eng C 237(6):1463–1485

    Article  CAS  Google Scholar 

  54. Li Z et al (2022) Novel tribometer for coated self-lubricating spherical plain bearings in a vacuum. Lubricants 10(11):291

    Article  CAS  Google Scholar 

  55. Dudás A et al (2022) Wear behaviour of ceramic particle reinforced atmospheric plasma spray coatings on the cylinder running surface of internal combustion engines. Wear 502:204373

    Article  Google Scholar 

  56. Ali AI et al. (2023) Experimental analysis of tribological performance of base ficus carica vegetable oil with different polymers as additives using four ball tribometer. Materials Today: Proceedings

  57. Golafshan R et al (2022) Characterization of elastohydrodynamic contact film thickness under high frequency force excitation using a 2D unwrapping-based image processing technique. Tribol Int 175:107841

    Article  Google Scholar 

  58. Yan S et al (2023) Enhanced extreme pressure lubrication performance and load carrying capability of gallium-based liquid metal reinforced with MoSe2 and WSe2 nanoparticles. Tribol Int 183:108414

    Article  CAS  Google Scholar 

  59. Mehamud I et al (2023) Small size and low-cost TENG-based self-powered vibration measuring and alerting system. Adv Electron Mater 9:2300111

    Article  CAS  Google Scholar 

  60. Pan C et al (2023) Recent patents on friction and wear tester. Recent Patents Eng 17(4):86–102

    Google Scholar 

  61. Dubey MK et al (2022) Tribological evaluation of passenger car engine oil: Effect of friction modifiers. Results Eng 16:100727

    Article  CAS  Google Scholar 

  62. Kreivaitis R et al (2022) Effect of temperature on the lubrication ability of two ammonium ionic liquids. Wear 492:204217

    Article  Google Scholar 

  63. Zhang X et al (2023) Thiadiazole functionalized covalent organic frameworks as oil-based lubricant additives for anti-friction and anti-wear. Tribol Int 183:108393

    Article  CAS  Google Scholar 

  64. Song R et al (2022) Effects of biomass fast pyrolysis fuel on the tribological behaviour of heavy-duty diesel engine lubricating oil. Appl Sci 12(5):2360

    Article  CAS  Google Scholar 

  65. Wu Y et al (2023) Effect of frictional frequency on the subsurface evolution of 316L stainless steel in tribocorrosion and its influence on the synergistic effect between corrosion and wear. Tribol Int 178:108026

    Article  CAS  Google Scholar 

  66. Serles P et al (2022) High performance space lubrication of MoS2 with tantalum. Adv Func Mater 32(20):2110429

    Article  CAS  Google Scholar 

  67. Walker J et al (2023) Variable pressure scuffing of a flake graphite cast iron diesel cylinder liner. Tribol Int 179:108155

    Article  CAS  Google Scholar 

  68. Kolm R et al (2005) Tribochemistry of mono molecular additive films on metal surfaces, investigated by XPS and HFRR. Tribology and interface engineering series. Elsevier, Amsterdam, pp 269–282

    Google Scholar 

  69. Hu H et al (2023) In-situ research on formation mechanisms of transfer films of a Polyimide-MoS2 composite in vacuum. Tribol Int 180:108211

    Article  CAS  Google Scholar 

  70. Song H et al (2023) Toward ultralow friction and wear of ultrananocrystalline diamond film by formation of graphene nanosheets with a Cu catalyst. Mater Lett 330:133329

    Article  CAS  Google Scholar 

  71. Xing Y et al (2023) High-temperature tribological properties of Si3N4/TiC ceramic with bionic surface textures and DLC coatings. Tribol Int 186:108648

    Article  CAS  Google Scholar 

  72. Hofmann S, Lohner T, Stahl K (2023) Influence of water content on elastohydrodynamic friction and film thickness of water-containing polyalkylene glycols. Front Mech Eng 9:1128447

    Article  Google Scholar 

  73. Hao L et al (2022) Friction and wear properties of a nanoscale ionic liquid-like GO@ SiO2 hybrid as a water-based lubricant additive. Lubricants 10(6):125

    Article  CAS  Google Scholar 

  74. Sukumaran AK et al (2023) Tribological behavior of Al 6061 and Ti6Al4V alloys against lunar regolith simulants at extreme temperatures. Wear 530:205028

    Article  Google Scholar 

  75. Kinoshita H et al (2022) Low Friction of graphene oxide aggregates in lubricant oil between a steel ball and glass disk under boundary lubrication. ACS Omega 7(45):40983–40989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Thrush SJ et al (2022) Growth and morphology of thermally assisted sinterable zirconia nanoparticle tribofilm. Tribol Int 175:107820

    Article  CAS  Google Scholar 

  77. Coors T et al (2023) Wear of tailored forming steels. Adv Eng Mater 25(13):2201740

    Article  CAS  Google Scholar 

  78. Kumar D. et al. (2023) Effect of Y2O3 additive on mechanical and wear behaviour of hBN reinforced SiC ceramic matrix composite. Materials Today: Proceedings

  79. Zafar MM, Toor ZS (2023) Experimental and numerical investigation of electrochemical and tribological behavior of aluminum alloys. J Eng Res 11:100134

    Article  Google Scholar 

  80. Ramos-Moore E et al (2022) Influence of crystallographic texture on friction in α-Al2O3/Ti (C, N) ceramic tool coatings. Ceram Int 48(23):34571–34575

    Article  CAS  Google Scholar 

  81. Poshtahani AG, Roostaie S, Azadi M (2023) Plasma nitriding effect on tribological and corrosion properties of Stellite 6 and 12 PTA weld clad hardfaced on stainless steel 410. Results Surf Interfaces 11:100108

    Article  Google Scholar 

  82. Lorenzo-Bonet E et al (2023) Tribological analysis of ultra-high molecular weight polyethylene composites with boron carbide micro and nanoparticles. Wear 523:204861

    Article  CAS  Google Scholar 

  83. Wang B et al (2023) Investigation of cryogenic friction and wear properties of Invar 36 alloy against Si3N4 ceramic balls. Wear 518:204648

    Article  Google Scholar 

  84. Moon HH et al (2022) Aqueous lubrication and wear properties of nonionic bottle-brush polymers. RSC Adv 12(28):17740–17746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang H et al (2023) Tribological properties of graphene oxide reinforced PPTA/PTFE composites. J Market Res 23:3505–3514

    CAS  Google Scholar 

  86. Mahmud DNF et al (2019) Influence of contact pressure and sliding speed dependence on the tribological characteristics of an activated carbon-epoxy composite derived from palm kernel under dry sliding conditions. Friction 7:227–236

    Article  Google Scholar 

  87. Xu Z et al (2023) Study on the damage evolution of fretting wear in an Inconel 718 laser cladding alloy layer at different temperatures. Tribol Int 179:108092

    Article  CAS  Google Scholar 

  88. Yin M et al (2022) Effect of ultrasonic surface rolling process on the high temperature fretting wear behavior of Inconel 690 alloy. Wear 500:204347

    Article  Google Scholar 

  89. Hua K et al (2022) Investigation on fretting wear mechanism of 316 stainless steel induced by Ni dissolution during pre-immersion corrosion in the liquid lead-bismuth eutectic (LBE). Tribol Int 174:107772

    Article  CAS  Google Scholar 

  90. Patel M, Murugesan J (2022) Fretting wear and corrosion behaviour of an Al–ZrO2/Ni hybrid composite developed by friction stir processing. Trans Indian Inst Met 75(6):1525–1534

    Article  CAS  Google Scholar 

  91. Zamani P et al (2022) Characterization and high-temperature fretting wear resistance of HVOF-sprayed Cr3C2-NiCr, CoCrWC and CoCrWNiC hardfacing coatings. J Therm Spray Technol 31(7):2157–2171

    Article  CAS  Google Scholar 

  92. Chen X-D et al (2022) Effect of salt bath temperature on microstructure and fretting wear of nitrided 225 Cr–1Mo steel in liquid sodium. Appl Surf Sci 606:154988

    Article  CAS  Google Scholar 

  93. Lv G et al (2023) Investigation on fretting Wear performance of laser cladding WC/Co06 coating on 42CrMo steel for hydraulic damper. Int J Refract Metal Hard Mater 111:106068

    Article  CAS  Google Scholar 

  94. Kuang W et al (2022) Fretting wear behaviour of machined layer of nickel-based superalloy produced by creep-feed profile grinding. Chin J Aeronaut 35(10):401–411

    Article  Google Scholar 

  95. Shu Y-J et al (2022) Adaptive finite element simulation and experimental verification for fretting wear of PVDF piezoelectric thin films. Wear 502:204395

    Article  Google Scholar 

  96. Chen X-D et al (2022) Effect of QPQ on the fretting wear behavior of TP316H steel at varying temperatures in liquid sodium. J Nucl Mater 562:153583

    Article  CAS  Google Scholar 

  97. Shi Z et al (2023) Effects of frequency on the fretting wear behavior of aluminum bronze coatings. Surf Coat Technol 457:129306

    Article  CAS  Google Scholar 

  98. Li H et al (2022) Fretting wear evolution model of the metal filaments inside metal rubber. Wear 506:204438

    Article  Google Scholar 

  99. Li H et al (2023) Study on the fretting wear evolution model of wires with curvature inside metal rubber. Tribol Lett 71(1):22

    Article  Google Scholar 

  100. Wang J et al (2023) Effect of contact misalignment on fretting wear behavior between fuel cladding and Zr-4 grid. Tribol Int 181:108299

    Article  CAS  Google Scholar 

  101. Sun D et al (2023) Fretting wear properties and microstructure evolution in micro-arc oxidation bioceramic coating pretreated using laser remelting. Ceram Int 49(3):4979–4986

    Article  CAS  Google Scholar 

  102. Zhang Y et al (2023) Fretting wear behavior of Zr alloy cladding tube mated with Zr alloy dimple under mixed fretting regime in simulated primary water of PWR. J Mater Sci Technol 158:43–52

    Article  CAS  Google Scholar 

  103. Patel M, Murugesan J (2022) Effect of the tool pin eccentricity and cooling rate on microstructure, mechanical properties, fretting wear, and corrosion behavior of friction stir processed AA6063 alloy. J Mater Eng Perform 31(10):8554–8566

    Article  CAS  Google Scholar 

  104. Alam F et al (2015) Processing, characterization and fretting wear of zinc oxide and silver nanoparticles reinforced ultra high molecular weight polyethylene biopolymer nanocomposite. JOM 67:688–701

    Article  CAS  Google Scholar 

  105. Fasihi P et al (2021) Effect of graphite and MoS2 based solid lubricants for application at wheel-rail interface on the wear mechanism and surface morphology of hypereutectoid rails. Tribol Int 157:106886

    Article  CAS  Google Scholar 

  106. Zakharov S et al (2015) Tribological studies for developing friction modifiers in the wheel–rail system. J Frict Wear 36:468–475

    Article  Google Scholar 

  107. Kumar SS et al. (2023) Load evaluation and thermal stress prediction of polyamide gears using fea, design of experiment and the response surface method. In: AIP Conference Proceedings. AIP Publishing

  108. Blau PJ (2008) Friction science and technology: from concepts to applications. CRC Press, Boca Raton

    Book  Google Scholar 

  109. Arinbjarnar U et al (2023) The influence of particle hardness on wear in sheet metal forming. Mater Res Proc 28:78

    Google Scholar 

  110. Bozkurt F (2023) Investigation of tribological properties of head, web and foot sections of R260 rail. Demiryolu Mühendisliği 17:107–114

    Article  Google Scholar 

  111. Bozkurt F, Er Ü (2020) Investigation of tribological properties of rail and wheel steels. Met Sci Heat Treat 62:405–414

    Article  CAS  Google Scholar 

  112. Li Y et al (2023) A ratcheting mechanism-based numerical model to predict damage initiation in twin-disc tests of premium rail steels. Eng Fail Anal 146:107066

    Article  CAS  Google Scholar 

  113. Majid HM et al. (2023) Design and fabrication of portable block on ring tribometer and its application to evaluate wear of SS-201 steel. In: 6th Mechanical Engineering, Science and Technology International conference (MEST 2022). Atlantis Press

  114. Liu Z et al (2022) A comprehensive experimental study on tribological performance of piston ring–cylinder liner pair. Proc Inst Mech Eng Part J 236(1):184–204

    Article  CAS  Google Scholar 

  115. Jacob Orozco-García C et al (2022) Analysis of wear for a base Steel 5% Cr, applying 392 N of load and variable speed of 0.18 m/s, 0.36 m/s and 0.54 m/s, using the T05 Block-on-ring wear tester machine. J Res Dev 8(21):7

    Google Scholar 

  116. Biswas MAS et al (2022) Lubrication performance of sunflower oil reinforced with halloysite clay nanotubes (HNT) as lubricant additives. Lubricants 10(7):139

    Article  CAS  Google Scholar 

  117. Huang Q et al (2022) Wear-triggered self-repairing behavior of bionic textured AISI 4140 steel filled with multi-solid lubricants. Wear 504:204416

    Article  Google Scholar 

  118. Mahadeshwara MR et al (2023) Investigating the synergistic effect of electrochemical texturing and MoSeC coatings on the frictional behaviour of lubricated contacts. Coatings 13(4):692

    Article  CAS  Google Scholar 

  119. Lorenz M et al (2022) Direct multimodal nanoscale visualization of early phosphorus-based antiwear tribofilm formation. ACS Appl Mater Interfaces 14(30):35157–35166

    Article  CAS  PubMed  Google Scholar 

  120. Ortega JA et al (2023) Investigating the lubrication performance of vegetable oils reinforced with HNT and MMT nanoclays as green lubricant additives. Wear 523:204859

    Article  CAS  Google Scholar 

  121. Gebhard A, Jim BC (2022) Formation, stability and degradation of transfer films formed by polyphenylene sulfide (PPS) and its composites in dry sliding against steel. Wear 500:204343

    Article  Google Scholar 

  122. Pelcastre L, Weniger L-M, Hardell J (2023) On the low temperature tribological behaviour of brake block materials for railway applications under dry and icy conditions. Wear 523:204764

    Article  CAS  Google Scholar 

  123. Woma T et al (2023) Evaluation of friction co-efficient and wear performance of jatropha oil using standard steel ball on aluminium disc tribometer. J Mater Environ Sci 14(10):1266

    CAS  Google Scholar 

  124. Joshy R, Vyas A, Menghani J (2023) Various wear test rigs and its parametric investigations: a review. I:n AIP Conference Proceedings. AIP Publishing

  125. Liu J, Zhang Y, Liao B (2023) A review on preparation process and tribological performance of coatings for internal combustion engine piston ring. Adv Mech Eng 15(5):16878132231175752

    Article  CAS  Google Scholar 

  126. Peña-Parás L et al (2023) Nanoparticle lubricant additives applied in a CNC lathe ball screw component for improving the quality of machined workpieces: a case study. Wear 523:204752

    Article  Google Scholar 

  127. Kandeva M et al (2022) Performance characteristics of lubricant based on rapeseed oil containing different amounts of metal-containing additive. Ind Lubr Tribol 74(3):309–315

    Article  Google Scholar 

  128. Narita K (2012) Tribological properties of metal V-belt type CVT lubricant. Adv Tribol 2012. https://doi.org/10.1155/2012/476028

  129. Prabhu R, Devaraju A (2021) Recent review of tribology, rheology of biodegradable and FDM compatible polymers. Mater Today 39:781–788

    CAS  Google Scholar 

  130. Zhao S, Schneider H-C, Kamlah M (2020) An experimental method to measure the friction coefficients between a round particle and a flat plate. Powder Technol 361:983–989

    Article  CAS  Google Scholar 

  131. Patil SJ et al (2014) A review on effect of addition of nano particles on tribological properties of lubricants. Int J Mech Eng Technol 5(11):120–129

    Google Scholar 

  132. Hajdu Š (2021) The use of optimization in new design of tribometer specimen clamping system. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing

  133. Kaczor G (2018) The effect of selected factors on the process of wear under oscillatory motion. Tribologia 5:89

    Google Scholar 

  134. Suresh R et al (2017) Numerical simulation & experimental study of wear depth and contact pressure distribution of aluminum MMC Pin on disc tribometer. Mater Today 4(10):11218–11228

    Google Scholar 

  135. Wahlström J (2019) A pin-on-disc tribometer study of friction at low contact pressures and sliding speeds for a disc brake material combination. Results Eng 4:100051

    Article  Google Scholar 

  136. Bryant M, Neville A (2017) Fretting corrosion of CoCr alloy: Effect of load and displacement on the degradation mechanisms. Proc Inst Mech Eng 231(2):114–126

    Article  Google Scholar 

  137. Carrillo DF et al (2020) Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process. Surf Interfaces 21:100733

    Article  CAS  Google Scholar 

  138. Gradt T, Börner H, Schneider T (2001) Low temperature tribometers and the behaviour of ADLC coatings in cryogenic environment. Tribol Int 34(4):225–230

    Article  CAS  Google Scholar 

  139. Yukhno T, Vvedensky YV, Sentyurikhina L (2001) Low temperature investigations on frictional behaviour and wear resistance of solid lubricant coatings. Tribol Int 34(4):293–298

    Article  CAS  Google Scholar 

  140. Hübner W (2001) Phase transformations in austenitic stainless steels during low temperature tribological stressing. Tribol Int 34(4):231–236

    Article  Google Scholar 

  141. Kobayashi K et al (2015) Lubrication performance of ionic liquids as lubricants for space mechanisms under high vacuum and low temperature. Tribology 10(2):138–146

    Google Scholar 

  142. Ye T et al (2022) Microstructure, mechanical properties and low-temperature tribological behavior of Cr/Cr-W/W-DLC/DLC multilayer coatings on 5A06 Al alloy. J Market Res 18:810–819

    CAS  Google Scholar 

  143. Ye T et al (2023) Mechanical and tribological properties of 5A06 aluminum alloy at low temperature. Surf Topogr Metrol Prop 11(1):015011

    Article  Google Scholar 

  144. Liang H, Martin J, Mogne T (2003) Experimental investigation of friction on low-temperature ice. Acta Mater 51(9):2639–2646

    Article  CAS  Google Scholar 

  145. Ye T, Ma JW, Jia ZY (2021) Influence of design parameters on the low temperature tribological performance of surface textured Aluminium alloy. In: Journal of Physics: Conference Series. IOP Publishing

  146. Yan M, Liu R (2010) Influence of process time on microstructure and properties of 17–4PH steel plasma nitrocarburized with rare earths addition at low temperature. Appl Surf Sci 256(20):6065–6071

    Article  CAS  Google Scholar 

  147. Liu R et al (2012) Effects of rare earth elements on the characteristics of low temperature plasma nitrocarburized martensitic stainless steel. J Mater Sci Technol 28(11):1046–1052

    Article  CAS  Google Scholar 

  148. Aiman Y, Syahrullail S, Yahya W (2017) Tribological performance of palm kernel oil with addition of pour point depressants as a lubricant using four-ball tribotester under variable load test. J Teknol 79(7/3):56

    Google Scholar 

  149. La S et al (2018) Frictional behavior of a micro-sized superconducting fiber in a low-temperature medium: Experimental and computational analysis. Acta Mech Solida Sin 31:405–415

    Article  Google Scholar 

  150. Meresse D et al (2013) Friction and wear mechanisms of phenolic-based materials on high speed tribometer. J Tribol 135(3):031601

    Article  Google Scholar 

  151. Kumar H et al (2016) Design and development of high-temperature tribometer for material testing in liquid sodium environment. Int J Nucl Energy Sci Technol 10(3):276–285

    Article  CAS  Google Scholar 

  152. Varga M, Flasch M, Badisch E (2017) Introduction of a novel tribometer especially designed for scratch, adhesion and hardness investigation up to 1000℃. Proc Inst Mech Eng Part J 231(4):469–478

    Article  Google Scholar 

  153. Shah R et al (2020) High temperature tribology under linear oscillation motion. Lubricants 9(1):5

    Article  Google Scholar 

  154. Bonham CD, DellaCorte C (1990) The application of a computer data acquisition system for a new high temperature tribometer. In: Annual Meeting for the Society of Tribologists and Lubrication Engineers

  155. Polcar T, Cavaleiro A (2011) High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings. Surf Coat Technol 206(6):1244–1251

    Article  CAS  Google Scholar 

  156. Li L et al (2020) High-temperature friction and wear features of nickel-based single crystal superalloy. Tribol Lett 68:1–12

    Article  Google Scholar 

  157. Cui G, Han J, Wu G (2016) High-temperature wear behavior of self-lubricating Co matrix alloys prepared by P/M. Wear 346:116–123

    Article  Google Scholar 

  158. Dalverny O, Denape J (1998) A new tribometer for measuring friction data at high temperature in a continuous operation. Tribotest 5(1):1–14

    Article  Google Scholar 

  159. Neis P, Ferreira N, Lorini F (2011) Contribution to perform high temperature tests (fading) on a laboratory-scale tribometer. Wear 271(9–10):2660–2664

    Article  CAS  Google Scholar 

  160. Leveille T et al (2021) Development of a novel high temperature open tribometer with laser-based heating system. Wear 477:203881

    Article  CAS  Google Scholar 

  161. Kumar A, Chaudhary R, Singh RC (2021) Tribological Analysis of novel Apricot oil based Biolubricant against 15W40 oil tested on High Temperature Tribometer. J Eng Res 205:214

    Google Scholar 

  162. Dangsheng X (2001) Lubrication behavior of Ni–Cr-based alloys containing MoS2 at high temperature. Wear 251(1–12):1094–1099

    Article  Google Scholar 

  163. Lu J et al (2001) Mechanical and tribological properties of Ni-based alloy/CeF3/graphite high temperature self-lubricating composites. Wear 249(12):1070–1076

    Article  CAS  Google Scholar 

  164. Pereira J et al (2015) Tribology and high temperature friction wear behavior of MCrAlY laser cladding coatings on stainless steel. Wear 330:280–287

    Article  Google Scholar 

  165. Singh G, Kaur M (2020) High-temperature wear behaviour of HVOF sprayed 65%(NiCrSiFeBC)− 35%(WC–Co) coating. Surf Eng 36(11):1139–1155

    Article  CAS  Google Scholar 

  166. Gautam RKS, Rao U, Tyagi R (2019) High temperature tribological properties of Ni-based self-lubricating coatings deposited by atmospheric plasma spray. Surf Coat Technol 372:390–398

    Article  CAS  Google Scholar 

  167. Yang F et al (2022) Tribological behaviors of polycrystalline cubic boron nitride sliding against bearing steel in vacuum conditions. Coatings 12(5):693

    Article  CAS  Google Scholar 

  168. Sayilan A et al (2023) Tribological analysis of TiN film during run-in period: An in situ investigation under controlled environment in eSEM. Surf Coat Technol 455:129228

    Article  CAS  Google Scholar 

  169. Lorenz L et al (2022) Advantages of using triboscopic imaging: case studies on carbon coatings in non-lubricated friction conditions. Materials 15(12):4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang L et al (2022) Tribological performance of IL/(GO-MWCNT) coatings in high-vacuum and irradiation environments. Sci Rep 12(1):14368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Qi H et al (2023) High wear resistance of POSS Grafted-polyimide/silica composites under atomic oxygen conditions. Polymers 15(10):2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nevshupa RA et al (2015) Ultrahigh vacuum system for advanced tribology studies: design principles and applications. Tribol Int 86:28–35

    Article  Google Scholar 

  173. Rana R et al (2022) Influence of the nature and orientation of the terminal group on the tribochemical reaction rates of carboxylic acid monolayers on copper. Tribol Lett 70:1–10

    Article  Google Scholar 

  174. Hou K et al (2022) Prandtl–tomlinson-type models for coupled molecular sliding friction: chain-length dependence of friction of self-assembled monolayers. Tribol Lett 70(2):66

    Article  CAS  Google Scholar 

  175. Cui W et al (2023) Progresses on cryo-tribology: lubrication mechanisms, detection methods and applications. Int J Extreme Manuf 5(2):022004

    Article  Google Scholar 

  176. Bhalerao V, Lakade SS, Borgaonkar A (2023) The effect of boron nitride nanoparticles on 100Cr6 steel’s mechanical and tribological properties after vacuum heat treatment. Mater Today 77:941–945

    CAS  Google Scholar 

  177. Shi Y et al (2023) Robust macroscale superlubricity enabled by tribo-induced structure evolution of MoS2/metal superlattice coating. Compos B 250:110460

    Article  CAS  Google Scholar 

  178. Härtwig F et al (2022) Low-friction of Ta-C coatings paired with brass and other materials under vacuum and atmospheric conditions. Materials 15(7):2534

    Article  PubMed  PubMed Central  Google Scholar 

  179. Sukumaran AK, Agarwal A (2023) Radiation shielding plasma sprayed coatings heads to international space station for MISSE-17 Experiments. International Thermal Spray & Surface Engineering (iTSSe)

  180. Chen Z et al (2023) Friction-induced metastable transformation of amorphous carbon film: exploration by experimental and molecular dynamics simulations. Appl Surf Sci 628:157327

    Article  CAS  Google Scholar 

  181. Simonovic K et al (2022) Tribological behaviour of WSC coated ceramics in a vacuum environment. Tribol Int 167:107375

    Article  CAS  Google Scholar 

  182. Zhou Y et al (2023) Open-source tribometer with high repeatability: Development and performance assessment. Tribol Int 184:108421

    Article  CAS  Google Scholar 

  183. Wang C et al (2022) Enhanced biotribological and anticorrosion properties and bioactivity of Ti6Al4V alloys with laser texturing. ACS Omega 7(35):31081–31097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Guo Y-B, Wang D-G, Zhang S-W (2011) Adhesion and friction of nanoparticles/polyelectrolyte multilayer films by AFM and micro-tribometer. Tribol Int 44(7–8):906–915

    Article  CAS  Google Scholar 

  185. Yu H et al (2011) Nano-tribometer integrated with a nano-photonic displacement-sensing mechanism. J Micromech Microeng 21(6):065014

    Article  Google Scholar 

  186. Xu H, Zhang C, Wu P (2016) Design and testing of micro-tribometer with macro applied load. Sci China Technol Sci 59:1666–1672

    Article  Google Scholar 

  187. Pu J et al (2011) Micro/nano-tribological behaviors of crown-type phosphate ionic liquid ultrathin films on self-assembled monolayer modified silicon. Surf Coat Technol 205(20):4855–4863

    Article  CAS  Google Scholar 

  188. Zhao W et al (2009) Effect of anion on micro/nano-tribological properties of ultra-thin imidazolium ionic liquid films on silicon wafer. Colloids Surf A 332(2–3):78–83

    Article  CAS  Google Scholar 

  189. Zhao W et al (2013) A novel strategy to enhance micro/nano-tribological properties of DLC film by combining micro-pattern and thin ionic liquids film. Colloids Surf A 428:70–78

    Article  CAS  Google Scholar 

  190. Yoon E-S et al (2002) Micro/nano tribological and water wetting characteristics of ion beam treated PTFE surfaces. KSTLE Int J 3(1):12–16

    Google Scholar 

  191. Zhao W et al (2012) Micro/nano-texture design for improving tribological properties of DLC-IL composite films. Nanosci Nanotechnol Lett 4(9):901–909

    Article  CAS  Google Scholar 

  192. Ingole SP, Valdes J (2013) Tribo-chemistry and Tribo-corrosion. Tribology for scientists and engineers: from basics to advanced concepts. Springer, New York, pp 729–746

    Chapter  Google Scholar 

  193. Wen X et al (2022) Corrosion and tribo-corrosion behaviors of nano-lamellar Ni1: 5CrCoFe0.5Mo0.1Nbx eutectic high-entropy alloy coatings: The role of dual-phase microstructure. Corros Sci 201:110305

    Article  CAS  Google Scholar 

  194. Yang X et al (2023) Tribo-corrosion resistance of Ti-Nb-Cr-Mo-Al refractory high-entropy alloys in molten aluminum. Corros Sci 224:111521

    Article  CAS  Google Scholar 

  195. Kolawole FO et al (2023) The improvement of diamond-like carbon coatings for tribological and tribo-corrosion applications in automobile engines: an updated review study. Int J Adv Manuf Technol 126(5–6):2295–2322

    Article  Google Scholar 

  196. Niu D et al (2022) Microstructure, mechanical properties and tribo-corrosion mechanism of (CrNbTiAlVMo) xN1− x coated 316 L stainless steel in 35 wt% NaCl solution. Tribol Int 173:107638

    Article  CAS  Google Scholar 

  197. Wang B et al (2023) Tribo-corrosion interaction of the parallel steel wires in the suspension bridges. Friction 11:1–17

    Article  Google Scholar 

  198. Ralls AM, Menezes PL (2023) Understanding the tribo-corrosion mechanisms of friction stir processed steel deposited by high-pressure deposition additive manufacturing process. Int J Adv Manuf Technol 128(1–2):823–843

    Article  Google Scholar 

  199. Cai F et al (2023) Effect of inserting the Zr layers on the tribo-corrosion behavior of Zr/ZrN multilayer coatings on titanium alloys. Corros Sci 213:111002

    Article  CAS  Google Scholar 

  200. Ling Z et al (2022) A new Fe-Cr-Mo-B-Al steel with outstanding tribo-corrosion resistance in liquid aluminium. Corros Sci 206:110484

    Article  CAS  Google Scholar 

  201. Niu D et al (2023) Tailoring the tribo-corrosion response of (CrNbTiAlV) CxNy coatings by controlling carbon content. Tribol Int 179:108179

    Article  CAS  Google Scholar 

  202. Wang D et al (2023) Effect of temperature on tribo-corrosion behaviors of parallel steel wires of main cable in the suspension bridge. Wear 512:204522

    Article  Google Scholar 

  203. Taufiqurrakhman M, Neville A, Bryant M (2022) Factors influencing the bio-tribo-corrosion and chemistry on cobalt alloys: a brief literature review. In: AIP Conference Proceedings. AIP Publishing

  204. Palimi M et al (2022) Improve the tribo-corrosion behavior of oil-in-water emulsion-based drilling fluids by new derivatives of fatty acid-based green inhibitors. Tribol Int 174:107723

    Article  CAS  Google Scholar 

  205. Sun W et al (2023) The roles of microstructural anisotropy in tribo-corrosion performance of one certain laser cladding Fe-based alloy. Friction 4:1–17

    Google Scholar 

  206. Philip JT et al. (2023) Surface modification methods to improve the tribo-corrosion behavior of Ti6Al4V: a review. In AIP Conference Proceedings. AIP Publishing

  207. Wang Y et al (2022) Effect of the microstructure of corrosion products on tribo-corrosion performance of HVOF-sprayed NiCrWMoCuCBFe coating. Corros Sci 207:110597

    Article  CAS  Google Scholar 

  208. Zhang C et al (2022) Construction of a compact nanocrystal structure for (CrNbTiAlV) Nx high-entropy nitride films to improve the tribo-corrosion performance. Surf Coat Technol 429:127921

    Article  CAS  Google Scholar 

  209. Wang B et al (2023) Bending tribo-corrosion-fatigue behaviors between cable wire and saddle material in the suspension bridge. Tribol Int 4:108711

    Article  Google Scholar 

  210. Wang H et al (2022) Tribo-corrosion mechanisms and electromechanical behaviours for metal implants materials of CoCrMo, Ti6Al4V and Ti15Mo alloys. Biosurf Biotribol 8(1):44–51

    Article  Google Scholar 

  211. Barão V, Sukotjo C, Mathew M (2013) Fundamentals of linking tribology and corrosion (tribocorrosion) for medical applications: Bio-tribocorrosion. Tribol Sci Eng 7:637–655

    Google Scholar 

  212. Xu H et al (2023) Performance optimization of epoxy resin (EP) modified by phenolic and effect on the tribological properties and corrosion of MoS2+ Sb2O3/EP composite coating for ultra-long wear life and good corrosion resistance. Polym Eng Sci 63(10):3474–3491

    Article  CAS  Google Scholar 

  213. Das PP, Chaudhary V (2022) Tribological properties of biofiber-based polymer composites. Advances in bio-based fiber. Elsevier, Amsterdam, pp 193–211

    Chapter  Google Scholar 

  214. Masia A et al. (2023) Novel design of a general-purpose in-situ tribology test chamber for fluid power applications. In: Fluid Power Systems Technology. American Society of Mechanical Engineers.

  215. Antonicelli M et al (2023) Evaluation of the effectiveness of natural origin metalworking fluids in reducing the environmental impact and the tool wear. J Clean Prod 385:135679

    Article  CAS  Google Scholar 

  216. Dueñas J et al (2023) Test bench for highly segmented GRIT double-sided silicon strip detectors: a detector quality control protocol. Sensors 23(12):5384

    Article  PubMed  PubMed Central  Google Scholar 

  217. Khan T (2023) Editorial for the special issue on manufacturing: tribology, surface engineering and lubricants. Tribol-Mate. 17:1–2

    Google Scholar 

  218. Yang K et al (2022) Synergy of hyperbranched polysiloxane and MoS2/rGO heterostructured particles for enhancing polyimide bonded solid lubricating coatings. Prog Org Coat 173:107183

    Article  CAS  Google Scholar 

  219. Tai BL, Dasch JM, Shih AJ (2011) Evaluation and comparison of lubricant properties in minimum quantity lubrication machining. Mach Sci Technol 15(4):376–391

    Article  CAS  Google Scholar 

  220. Karthik S et al (2022) Experimental and numerical approach to predict slurry erosion in jet erosion test rig. Int J Refract Metal Hard Mater 105:105807

    Article  CAS  Google Scholar 

  221. Anil K, Reddy M, Mamatha K (2023) Air jet erosion studies on aluminum-red mud composites using Taguchi design.

  222. Yadav R et al (2022) Effect of alumina particulate and E-glass fiber reinforced epoxy composite on erosion wear behavior using Taguchi orthogonal array. Tribol Int 175:107860

    Article  CAS  Google Scholar 

  223. Prasad CD et al (2022) Elevated temperature erosion performance of plasma sprayed NiCrAlY/TiO2 coating on MDN 420 steel substrate. Surf Topogr Metrol Prop 10(2):025010

    Article  Google Scholar 

  224. Francis A et al (2022) High-temperature erosion and its mechanisms of IN-738 superalloy under hot air jet conditions. Int J Interact Des Manuf (IJIDeM) 14:1–7

    Google Scholar 

  225. Singh S, Grewal JS, Rakha K (2022) Erosion wear performance of HVOF and cold spray coatings deposited on T-91 boiler steel. Mater Today 62:7509–7516

    CAS  Google Scholar 

  226. Prashar G, Vasudev H (2022) Structure-property correlation and high-temperature erosion performance of Inconel625-Al2O3 plasma-sprayed bimodal composite coatings. Surf Coat Technol 439:128450

    Article  CAS  Google Scholar 

  227. Budinski KG (2017) Guide to friction, wear and erosion testing. ASTM international West, Conshohocken

    Google Scholar 

  228. Behera N, Medabalimi S, Ramesh M (2023) Effect of impact angles and temperatures on the solid particle erosion behavior of HVOF sprayed WC-Co/NiCr/Mo and Cr3C2-CoNiCrAlY coatings. J Thermal Spray Technol 32:2411–2425

    Article  CAS  Google Scholar 

  229. Behera N, Medabalimi SR, Ramesh M (2023) Elevated temperatures erosion wear behavior of HVOF sprayed WC-Co-Cr/Mo coatings on Ti6Al4V substrate. Surf Coat Technol 470:129809

    Article  CAS  Google Scholar 

  230. Muthusamy AR et al (2022) Erosion performance of natural fiber reinforced vinyl ester hybrid composites: effect of layering sequences. Mater Today 64:200–206

    CAS  Google Scholar 

  231. Madhu Sudana Reddy G et al (2023) Investigation of high-temperature erosion behavior of NiCrAlY/TiO2 plasma coatings on titanium substrate. JOM 75(9):3317–3323

    Article  CAS  Google Scholar 

  232. Rajkumar K et al (2022) Influence of silicon filler size and concentration on thermal stability and erosion wear resistance of polymer composite. SILICON 14(15):9595–9608

    Article  CAS  Google Scholar 

  233. Harish U et al (2022) Enhancing the performance of inconel 601 alloy by erosion resistant WC-CR-CO coated material. J Eng Sci Technol 17:0379–0390

    Google Scholar 

  234. Reddy GMS et al (2022) Solid Particle Erosion Behaviour of Plasma-Sprayed (WC–Co)/(Cr3C2–NiCr) Coatings. J Bio-and Tribo-Corrosion 8(2):40

    Article  Google Scholar 

  235. Balamurugan K et al (2023) Effect of TiC/RHA on solid particle erosion of Al6061 hybrid composites fabricated through a 2-step ultrasonic-assisted stir casting process. J Market Res 25:4888–4900

    CAS  Google Scholar 

  236. Mohanta N, Acharya SK (2015) Mechanical and tribological performance of Luffa cylindrica fibre-reinforced epoxy composite. BioResources 10(4):8364–8377

    Article  CAS  Google Scholar 

  237. Chailad W et al (2022) Development of slurry-jet erosion test for elastomeric materials. Wear 488:204125

    Article  Google Scholar 

  238. Fukuma S, Iwai Y, Mori SI (2022) An imaging of fine structure for surface and its inside of solid material with micro slurry-jet erosion test. In: IEICE Proceedings Series. 69(RS2-4).

  239. Singh V, Bansal A, Singla AK (2023) Slurry erosion behaviour of HVOF sprayed VC+ TiC based novel coatings: Characterization and optimization studies. Tribol Int 180:108289

    Article  CAS  Google Scholar 

  240. Singh V, Singla AK, Bansal A (2023) Influence of TiC content on slurry erosion behaviour of HVOF sprayed titanium carbide and cupronickel-chromium based coatings. J Thermal Spray Technol 7:1–19

    Google Scholar 

  241. Wang Z et al (2023) Particle erosion behavior in viscoelastic surfactant abrasive slurry jetting. Powder Technol 416:118230

    Article  CAS  Google Scholar 

  242. Singh V, Singla AK, Bansal A (2022) Impact of HVOF sprayed Vanadium Carbide (VC) based novel coatings on slurry erosion behaviour of hydro-machinery SS316 steel. Tribol Int 176:107874

    Article  CAS  Google Scholar 

  243. Zu J, Hutchings I, Burstein G (1990) Design of a slurry erosion test rig. Wear 140(2):331–344

    Article  CAS  Google Scholar 

  244. Singh V, Singla AK, Bansal A (2023) Influence of laser texturing on hydrophobicity and slurry erosion behaviour of VC-CuNiCr based HVOF coatings. Surf Topogr Metrol Prop 11(3):035005

    Article  Google Scholar 

  245. Sahni K, Grewal JS (2022) Slurry erosion behaviour of WC-10Co-4Cr coated CF8M turbine steel. Mater Today 56:2666–2671

    CAS  Google Scholar 

  246. Vishnoi M, Murtaza Q, Kumar P (2023) Mechanical and erosion characterization of untreated and solution-treated nitrogen-alloyed (23–8N) austenitic stainless steel. J Mater Eng Perf 1:1–11

    Google Scholar 

  247. Ribu DC et al (2022) Experimental investigation of erosion corrosion performance and slurry erosion mechanism of HVOF sprayed WC-10Co coatings using design of experiment approach. J Market Res 18:293–314

    CAS  Google Scholar 

  248. Nezhad AN, Zahrani EM, Alfantazi A (2022) Erosion-corrosion of electrodeposited superhydrophobic Ni-Al2O3 nanocomposite coatings under jet saline-sand slurry impingement. Corros Sci 197:110095

    Article  Google Scholar 

  249. Agarwal P et al (2022) Experimental and numerical investigation on slurry erosion performance of hybrid glass/steel fiber reinforced polymer composites for marine applications. Polym Compos 43(8):5592–5610

    Article  CAS  Google Scholar 

  250. Kumar A, Garg RK, Sachdeva A (2023) Performance of thermally sprayed nickel and tungsten-based coatings in slurry erosion conditions: a review. J Tribol 145(9):090801

    Article  CAS  Google Scholar 

  251. Rana VK, Sharma V, Singh S (2022) Characterization and slurry erosion performance of plasma sprayed Ni–Al2O3 and Ni–TiO2–Al2O3 coatings on turbine steel, in recent trends in materials: select proceedings of ICTMIM 2022. 2022, Springer. pp 215–231.

  252. More SR et al (2022) CFD simulation and experimental results validation of slurry erosion wear using slurry pot test rig. Trends Sci 19(11):4524–4524

    Article  Google Scholar 

  253. Senapati P et al. (2022) Slurry erosion behaviour of HVOF-sprayed NiAl composite coating, in recent advances in mechanical engineering: select proceedings of ICRAMERD 2021. Springer. pp 623–629

  254. Mann B et al (2006) Corrosion and erosion performance of HVOF/TiAlN PVD coatings and candidate materials for high pressure gate valve application. Wear 260(1–2):75–82

    Article  CAS  Google Scholar 

  255. Ibrahim ME, Medraj M (2022) Prediction and experimental evaluation of the threshold velocity in water droplet erosion. Mater Des 213:110312

    Article  Google Scholar 

  256. Shaik RA et al (2022) On the role of strain hardening and mechanical properties in water droplet erosion of metals. Tribol Int 173:107649

    Article  CAS  Google Scholar 

  257. Li D et al (2022) Water-droplet erosion behavior of high-velocity oxygen-fuel-sprayed coatings for steam turbine blades. Corros Rev 40(1):39–49

    Article  CAS  Google Scholar 

  258. Bech JI et al (2022) Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades. Renewable Energy 197:776–789

    Article  Google Scholar 

  259. Chen C et al (2023) Effect of CeO2 on the TiB2+ TiC evolution and water droplet erosion resistance of laser-clad Ni60A coatings. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 237(2):353–366

    Article  CAS  Google Scholar 

  260. Miao X et al (2023) Effect of graphene addition on the performance of in-situ (TiC+ TiBx)/Ti composite coatings by laser cladding: Microstructure and water droplet erosion resistance. Surf Coat Technol 459:129381

    Article  CAS  Google Scholar 

  261. Song N, Benmeddour A (2022) Erosion Resistant Hydrophobic Coatings for Passive Ice Protection of Aircraft. Appl Sci 12(19):9589

    Article  CAS  Google Scholar 

  262. Khan MS, Sasikumar C (2022) A water droplet erosion-induced fatigue crack propagation and failure in X20Cr13 martensitic stainless-steel turbines working at low pressure. Eng Fail Anal 139:106491

    Article  CAS  Google Scholar 

  263. Gohardani O (2011) Impact of erosion testing aspects on current and future flight conditions. Prog Aerosp Sci 47(4):280–303

    Article  Google Scholar 

  264. Hussain A, Singh G, Gill HS (2022) Solid particle erosion behaviour of industrial epoxy resin composite against different parameters. Materials Today: Proceedings 48:1492–1496

    CAS  Google Scholar 

  265. Tempelis A, Mishnaevsky L Jr (2023) Surface roughness evolution of wind turbine blade subject to rain erosion. Mater Des 231:112011

    Article  Google Scholar 

  266. Chen Y, Zhang J (2022) High-Speed Erosion Behavior of Hydrophobic Micro/Nanostructured Titanium Surfaces. Nanomaterials 12(5):880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. López JC et al (2023) A wind turbine blade leading edge rain erosion computational framework. Renewable Energy 203:131–141

    Article  Google Scholar 

  268. Pathak SM et al (2022) Solid particle erosion studies of ceramic oxides reinforced water-based PU nanocomposite coatings for wind turbine blade protection. Ceram Int 48(23):35788–35798

    Article  CAS  Google Scholar 

  269. Poloprudský J et al (2022) Effects of liquid droplet volume and impact frequency on the integrity of Al alloy AW2014 exposed to subsonic speeds of pulsating water jets. Wear 488:204136

    Article  Google Scholar 

  270. Katsivalis I et al (2022) Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applications. Wind Energy 25(10):1758–1774

    Article  Google Scholar 

  271. Mahdipoor M et al (2015) Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V. Sci Rep 5(1):14182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Białobrzeska B, Jasiński R (2023) Resistance to abrasive wear with regards to mechanical properties using low-alloy cast steels examined with the use of a dry sand/rubber wheel tester. Materials 16(8):3052

    Article  PubMed  PubMed Central  Google Scholar 

  273. Soni A et al (2023) Synergy of silica sand and waste plastics as thermoplastic composites on abrasive wear characteristics under conditions of different loads and sliding speeds. Chemosphere 323:138233

    Article  CAS  PubMed  Google Scholar 

  274. Białobrzeska B, Jasiński R (2023) Resistance to abrasive wear with regards to mechanical properties using low-alloy cast steels examined with the use of a dry sand/rubber wheel tester. Materials 16(22):7152

    Article  PubMed  PubMed Central  Google Scholar 

  275. Shegawu H, Oldal I, Kalácska G (2021) Abrasive wear by experimental methods with three-body abrasive wear testers. Mech Eng Lett 4:65

    Google Scholar 

  276. Kumar S, Varadarajan Y, Shamprasad M (2023) Three-body abrasive wear behavior of rice straw fibers reinforced PLA composites. Mater Today 26:322–326

    Google Scholar 

  277. Kumar S et al (2022) Experimental investigation of three-body abrasive wear behavior of rice husk filled polylactic acid (PLA) composites. Mater Today 52:599–603

    CAS  Google Scholar 

  278. Zhang J et al (2022) Microstructure and abrasive wear resistance evolution of water and liquid nitrogen forced cooling Fe-Cr-C deposit. Tribol Int 174:107732

    Article  CAS  Google Scholar 

  279. Suresha B et al. (2023) Mechanical properties and abrasion resistance of 3D printed lightweight CF-reinforced PLA/ABS composites using design of experiments. In: International Symposium on Lightweight and Sustainable Polymeric Materials. 2023. Springer.

  280. Jenish I et al (2022) Sea sand abrasive wear of red mud micro particle reinforced cissus quadrangularis stem fiber/epoxy composite. J Nat Fibers 19(16):13216–13231

    Article  CAS  Google Scholar 

  281. Hiremath SR, Keshavamurthy R, Ramesh C (2022) Abrasive wear behaviour of high-velocity oxy-fuel sprayed molybdenum–wt% silicon carbide composite coatings. J Inst Eng Ser D 103(2):403–415

    Article  CAS  Google Scholar 

  282. Umashankar D et al. (2023) Molybdenum powder coating on steel substrate to study three body wear resistance. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing.

  283. Ning B et al (2023) Study on wear resistance performance along the thickness direction of in situ TiC-reinforced high-strength steel. Steel Res Int 94(3):2200654

    Article  CAS  Google Scholar 

  284. Deng X et al (2022) Effect of solidification and hot rolling processes on wear performance of TiC-reinforced wear-resistant steel. Materials 15(3):729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Bembenek M et al (2022) Microstructure and wear characterization of the Fe-Mo-BC—based hardfacing alloys deposited by flux-cored arc welding. Materials 15(14):5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Iyyadurai J et al (2022) Sustainable development of Cissus quadrangularis stem fiber/epoxy composite on abrasive wear rate. J Nat Fibers 19(14):9283–9295

    Article  CAS  Google Scholar 

  287. Chand S et al (2022) Effect of three-body abrasion wear behavior alloy fabricated on B4C/BN-reinforced through powder Al6061 metallurgy method. Recent Adv Thermofluids Manuf Eng 2022:493

    Google Scholar 

  288. Białobrzeska B (2022) The influence of boron on the resistance to abrasion of quenched low-alloy steels. Wear 500:204345

    Article  Google Scholar 

  289. Raju B et al (2012) The effect of silicon dioxide filler on the wear resistance of glass fabric reinforced epoxy composites. Polymer Compos 18:20

    Google Scholar 

  290. Randall NX (2013) Experimental methods in tribology, in tribology for scientists and engineers: from basics to advanced concepts. Springer. pp. 141-175

  291. Aguilar-Rosas OA et al (2023) Electrified four-ball testing: a potential alternative for assessing lubricants (E-fluids) for electric vehicles. Wear 522:204676

    Article  CAS  Google Scholar 

  292. Banavathu KR et al (2023) Physico-chemical and tribological properties of commercial oil–bio-lubricant mixtures dispersed with graphene nanoplatelets. RSC Adv 13(26):17575–17586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Jiang H et al (2023) A tribological behavior assessment of steel contacting interface lubricated by engine oil introducing layered structural nanomaterials functionalized by oleic acid. Wear 524:204675

    Article  Google Scholar 

  294. Kreivaitis R et al (2023) Tribological properties of bis (2-hydroxyethyl) ammonium oleate in glycerol and polyethylene glycol aqueous solutions. J Mol Liq 369:120933

    Article  CAS  Google Scholar 

  295. Kulkarni T et al (2023) Anti-wear (AW) and extreme-pressure (EP) behavior of jojoba oil dispersed with green additive CaCO3 nanoparticles. J Eng Appl Sci 70(1):29

    Article  CAS  Google Scholar 

  296. Kumar G, Garg H (2023) Evaluation of tribological properties of vegetable oil–based ionanolubricants: An experimental study. Proc Inst Mech Eng Part J 14:13506501231179776

    Google Scholar 

  297. Kumar N, Saini V, Bijwe J (2023) Dependency of lithium complex grease on the size of hBN particles for enhanced performance. Tribol Lett 71(1):20

    Article  CAS  Google Scholar 

  298. Lai C-M et al (2024) Tribological characterisation of graphene hybrid nanolubricants in biofuel engines. Fuel 357:129654

    Article  CAS  Google Scholar 

  299. Lai C-M et al (2023) Optimization and performance characteristics of diesel engine using green fuel blends with nanoparticles additives. Fuel 347:128462

    Article  CAS  Google Scholar 

  300. Lei X et al (2023) Study on the mechanism of rapid formation of ultra-thick tribofilm by CeO2 nano additive and ZDDP. Friction 11(1):48–63

    Article  CAS  Google Scholar 

  301. Lin K et al (2023) Well-dispersed graphene enhanced lithium complex grease toward high-efficient lubrication. Chin J Mech Eng 36(1):133

    Article  CAS  Google Scholar 

  302. Loo DL et al (2023) Effect of nanoparticles additives on tribological behaviour of advanced biofuels. Fuel 334:126798

    Article  CAS  Google Scholar 

  303. Prasad DK, Amarnath M, Chelladurai H (2023) Impact of multi-walled carbon nanotubes as an additive in lithium grease to enhance the tribological and dynamic performance of roller bearing. Tribol Lett 71(3):88

    Article  CAS  Google Scholar 

  304. Ribeiro Filho PRCF et al (2023) Synthesis and tribological properties of bio-based lubricants from soybean oil. Biomass Conv Biorefinery 25:1–13

    Google Scholar 

  305. Singh AK et al (2023) Improvement of tribo-active behavior of g-C3N4 nanosheets using m-LaVO4 nanoparticles. Colloids Surf A 663:131031

    Article  Google Scholar 

  306. Wang H et al (2023) Evaluation of the tribological and anticorrosive properties of triazine derivatives in emulsion. J Adhes Sci Technol 37(17):2503–2523

    Article  CAS  Google Scholar 

  307. Wang J et al (2023) Tuning the interfacial behavior of extreme pressure lubrication by stearic acid-modified TiO2 nanoparticles. Appl Surf Sci 630:157510

    Article  CAS  Google Scholar 

  308. Xiang S et al (2023) Enhancing lubrication performance of calcium sulfonate complex grease dispersed with two-dimensional MoS2 nanosheets. Lubricants 11(8):336

    Article  CAS  Google Scholar 

  309. Zhao Z et al (2023) Well-dispersed graphene toward robust lubrication via reorganization of sliding interface. J Ind Eng Chem 119:619–632

    Article  CAS  Google Scholar 

  310. Mubashshir M, Shaukat A (2019) The role of grease composition and rheology in elastohydrodynamic lubrication. Tribol Lett 67(4):104

    Article  Google Scholar 

Download references

Funding

The authors are thankful to Amrita Vishwa Vidyapeetham for providing "Chancellor's Collaborative Research Fellowship" for facilitating the collaborative research on "Development and indigenization of sustainable Bio-Lubricants for Automotives" with King Mongkut's University of Technology, North Bangkok, Thailand. The authors are thankful to the University Grants Commission—Department of Atomic Energy—Consortium for Research, Government of India for providing financial assistance to carry out the research work “Development of High Entropy Alloy (HEA) hardfacing material for nuclear applications” through the project vide ‘‘CRS/2022-23/1104’’.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the manuscript.

Corresponding author

Correspondence to R. Vaira Vignesh.

Ethics declarations

Competing interest

The authors declare that there is no conflict of interest or competing interests for the research work.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muralidharan, K., Vignesh, V., Vignesh, R.V. et al. Comprehensive Overview of Nano, Micro, and Macro Tribometers in Practice. J Bio Tribo Corros 10, 44 (2024). https://doi.org/10.1007/s40735-024-00849-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-024-00849-x

Keywords

Navigation